Skip to main content

Galvanic Growth

  • Chapter
  • First Online:
Silicon Sensors and Actuators

Abstract

In MEMS fabrication, metallic films deposition by ion reduction from a solution may be performed either with electroplating or electroless process. Both techniques are suitable for MEMS application, depending on the desired deposit proprieties and on the required integration process. Deposition rate in electroless processes is generally quite slow, so for thick deposits, Electro-Chemical Deposition (ECD) is usually preferred. Furthermore, when the required metal thickness is higher than 0.5–1.0 μm and/or the active area (metal which remains on wafer) is very low, through-mask ECD is preferred with respect to a PVD/wet etch patterning approach. This is because in the latter case there is a higher metal waste and therefore a consequent higher cost. Through-mask electrochemical deposition is commonly used to generate bumps for wiring interconnections (e.g., to connect MEMS sensor with its ASIC) and for wafer to wafer bonding. Thick metal structures are also required in electromagnetic devices where actuation occurs (e.g., μMirror, ref. chapter). Section 8.1 of this chapter provides a summary of electroplating theory, while process integration on silicon wafers and ECD front-end tools are described in Sects. 8.2 and 8.3, respectively. Peculiar ECD techniques used in MEMS field like stacked metal plating and alloy plating are presented in Sects. 8.4 and 8.5. Section 8.6 is dedicated to an in-depth study of ECD baths and techniques to electroplate pure metals (gold, copper, nickel, and tin) or alloys (case study: Ni-Fe permalloy). Finally, a brief description of electrochemical gold etch technique (gold de-plating) is provided at the end of the same section.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Landolt, D. (2002). Electrodeposition science and technologies in the last quarter of twentieth century. Journal of the Electrochemical Society, 149(3), S9–S20.

    Article  Google Scholar 

  2. Bard, A. J., & Stratmann, M. (2007). Encylopedia of Electrochemistry, 5, 3.

    Google Scholar 

  3. O’M Bockris, J., & Reddy, A. K. N. (2002). Modern electrochemistry, Vol. 1, 2nd ed.

    Google Scholar 

  4. O’M Bockris, J., Reddy, A. K. N, Gamboa-Adelco, M. (2002). Modern electrochemistry, Vol. 2A, 2nd ed.

    Google Scholar 

  5. Paunovic, M., & Schlesinger, M. (1998). Fundamentals of electrochemical deposition. Wiley.

    Google Scholar 

  6. Schlesinger, M., & Paunovic, M. (2000). Modern electroplating. Wiley.

    Google Scholar 

  7. Ghodssi, R., & Lin, P. (2011). Ch 3: MEMS materials and process handbook (pp. 147–186). Springer.

    Book  Google Scholar 

  8. Datta, M., & Landolt, D. (2000). Fundamental aspects and applications of electrochemical microfabrication. Electochimica Acta, 45, 2535–2558.

    Article  Google Scholar 

  9. Crow, D. R. (1998). Principles and applications of electrochemistry. Stanley Thornes (Publishers) Ltd..

    Google Scholar 

  10. Kim, B., & Ritzdorf, T. (2004). Electrical waveform mediated through-mask deposition of solder bumps for wafer level packaging. Journal of the Electrochemical Society, 151, C342–C347.

    Article  Google Scholar 

  11. Datta, M., & Landolt, D. (1985). Experimental investigation of mass transport in pulse plating. Surface Technology, 25, 97–110.

    Article  Google Scholar 

  12. IBL, N. (1980). Some theoretical aspects of pulse electrolysis. Surface Technology, 10, 81–104.

    Article  Google Scholar 

  13. Landolt, D., & Marlot, A. (2003). Microstructure and composition of pulse plated metals and alloys. Surface and Coatings Technology, 169–170, 8–13.

    Article  Google Scholar 

  14. Chandrasekar, M. S., & Pushpavanam, M. (2008). Pulse and pulse reverse plating- conceptual, advantages and applications. Electrochimica Acta, 53, 3313–3322.

    Article  Google Scholar 

  15. Thiemig, D., Lange, R., & Bund, A. (2007). Influence of pulse plating parameters on the electrocodeposition of matrix metal nanocomposites. Electrochimica Acta, 52, 7362–7371.

    Article  Google Scholar 

  16. Pearson, T., & Dennis, J. K. (1991). Facts and fiction about pulse plating. Transactions of the IMF, 69(3), 75–79.

    Article  Google Scholar 

  17. Young-joo, O., Chung, S.-h., & Lee, M.-s. (2004). Optimization of thickness uniformity in electrodeposition onto a patterned substrate. Materials Transactions, 45(10), 3005–3010.

    Article  Google Scholar 

  18. Woodruff, D. J., & Hanson, K. M. Electroplating Apparatus with Segmented Anode Array, United States patent US 006497801B1, Dec 24,2002.

    Google Scholar 

  19. Sharma, B. K. (1991). Industrial chemistry (including chemical engineering) (pp. 1666–1691). Goel Publishing House.

    Google Scholar 

  20. Faust, C. L. (1941). Alloy plating. Transactions of The Electrochemical Society, 80(1), 301–327.

    Article  Google Scholar 

  21. Brenner, A. (1963). Electrodeposition of alloys: Principles and practice. Academic.

    Google Scholar 

  22. Paunovic, M., & Schlesinger, M. (1998). Fundamentals of electrochemical deposition (1st ed., pp. 42–48). Wiley.

    Google Scholar 

  23. Reid, F. M., & Goldie, W. (1974). Gold plating technology. Electrochemical Publications Limited.

    Google Scholar 

  24. Rapson, W. S., & Groenewald, T. (1978). Gold usage. Academic Press, Inc.

    Google Scholar 

  25. Wilkinson, P. (1986). Gold Bulletin, 19, 75.

    Article  Google Scholar 

  26. Green, T. A. (2007). Gold Bulletin, 40(2), 105.

    Article  Google Scholar 

  27. Dimitrijevic, S., Rajcic-Vujasinovic, M., & Trujic, V. (2013). International Journal of Electrochemical Science, 8, 6620.

    Google Scholar 

  28. Kato, M., & Okinaka, Y. (2004). Gold Bulletin, 37, 37–44.

    Article  Google Scholar 

  29. Traut, J., Wright, J., & Williams, J. (1990). Plating Surface Finishing, 77, 49.

    Google Scholar 

  30. Honma, H., & Kagaya, Y. (1993). Journal Electrochemical Society, 140, L135.

    Article  Google Scholar 

  31. Osaka, T., Kodera, A., Misato, T., Homma, T., Okinaka, Y., & Yoshioka, O. (1997). Journal of Electrochemical Society, 144, 3462.

    Article  Google Scholar 

  32. D.G. Foulke in F.M. Reid and W. Goldie. (1974). Gold plating technology (p. 52). Electrochemical Publications Limited.

    Google Scholar 

  33. Watanabe, H., Hayashi, S., & Honma, H. (1999). Journal of the Electrochemical Society, 146, 574.

    Article  Google Scholar 

  34. Lo, C. C., Augis, J. A., & Pinnel, M. R. (1979). Journal of Applied Physics, 50, 6887.

    Article  Google Scholar 

  35. D. Erikson, G. Visalli, A. Lodi, L. Castoldi, N. Thorp, P. McHugh, Wilson, (2007) Wilson, IEEE/SEMI Advanced Semiconductor Manufacturing Conference (ASMC), 222--226. Stresa, Italy

    Google Scholar 

  36. Weisenberger, L. M., & Durkin, B. J. (1994). Copper plating. Surface Engineering, 5, 167–176.

    Google Scholar 

  37. Mikkola, R. D., & Chen, L. (2000). Proceedings of the IEEE2000 international interconnect technology conference (pp. 117–119).

    Google Scholar 

  38. Liu, Y., Wang, J., Yin, L., et al. (2008). Journal of Applied Electrochemistry, 38, 1695–1705.

    Article  Google Scholar 

  39. Lagrange, S., Brongersma, S. H., Judelewicz, M., Saerens, A., Vervoort, I., Richard, E., Palmans, R., & Maex, K. (2000). Microelectronic Engineering, 50, 449.

    Article  Google Scholar 

  40. Castoldi, L., Morin, S., Visalli, G., Fukada, T., Ouaknine, M., Roh, E. H., & Yoo, W. S. (2003). ESC Meeting in Paris.

    Google Scholar 

  41. Castoldi, L., Lodi, A., & Visalli, G. (2008). ECS Transactions, 16(14), 23–28.

    Article  Google Scholar 

  42. Nguyen, V. H., Hof, A. J., van Kranenburg, H., Woerlee, P. H., & Weimar, F. (2001). Microelectronic Engineering, 55, 305.

    Article  Google Scholar 

  43. Vereecken, P. M., Blinstead, R. A., Deligianni, H., & Andricasos, P. C. (2005). IBM Journal of Research and Development, 49(1), 3–18.

    Article  Google Scholar 

  44. Li, Y., Yao, J., & Huang, X. (2016). International Journal Metallurgy Material Engineering, 2, 123.

    Google Scholar 

  45. Luo, J. K., Pritschow, M., Flewitt, A. J., Spearing, S. M., Fleck, N. A., & Milne, W. I. (2006). Journal of the Electrochemical Society, 153(10), D155–D161.

    Article  Google Scholar 

  46. Luo, J. K., Flewitt, A. J., Spearing, S. M., Fleck, N. A., & Milne, W. I. (2004). Materials Letters, 58, 2306.

    Article  Google Scholar 

  47. Tan, A. C. (1993). Tin and Solder plating in the semiconductor industry (chs 8–10) (p. 197). Chapman and Hall.

    Google Scholar 

  48. Xu, H., Vuorinen, V., Dong, H., & Paulasto-Krockel, M. (2015). Journal of Alloys and Compounds, 619, 325–331.

    Article  Google Scholar 

  49. Mita, M., Miura, K., Takenaka, T., Kajihara, M., Kurokawa, N., & Sakamoto, K. (2006). Materials Science and Engineering B, 126, 37–46.

    Article  Google Scholar 

  50. Sun, W., & Ivey Materials, D. G. (1999). Science and Engineering, B65, 111–122.

    Google Scholar 

  51. Baated, A., Kim, K.-S., & Suganuma, K. (2011). Journal of Materials Science: Materials in Electronics, 22, 1685.

    Google Scholar 

  52. Oberndorff, P., Dittes, M., & Crema, P., & Chopin, S. 8th IPC/JEDEC Int. Conf. on Lead-Free Electronic Components and Assemblies, Dec. 2004, Boston MS, USA.

    Google Scholar 

  53. Dittes, M., Obemdorff, P., & Petit, L. (2003) Tin Whisker formation - results, test methods and countermeasures, 53rd Electronic Components and Technology Conference, 2003. Proceedings., 2003, pp. 822–826.

    Google Scholar 

  54. Hirano, T., & Fan, L.-S. (1996). Invar electrodeposition for MEMS application. Micromachining and Microfabrication Process Technology II, 2879, 252–259.

    Article  Google Scholar 

  55. Nagayama, T., Yamamoto, T., & Nakamura, T. (2019). Electroplating and characterization of invar Fe–Ni alloy films from plating baths containing organic acids. ECS Transactions, 89(7), 65–80.

    Article  Google Scholar 

  56. Dubin, V. M., Lisunova, M. O., Kovalenko, I. O., Walton, B. L., Downey, G., Su, J., & Witt, K. (2016). Invar electroplating for controlled expansion interconnects. ECS Transactions, 75(7), 33–40.

    Article  Google Scholar 

  57. Hessami, S., & Tobias, C. W. (1989). A mathematical model for anomalous Codeposition of nickel-Iron on a rotating disk electrode. Journal of the Electrochemical Society, 136, 3611–3616.

    Article  Google Scholar 

  58. Nakano, H., Matsuno, M., Oue, S., Yano, M., Kobayashi, S., & Fukushima, H. (2004). Mechanism of anomalous type electrodeposition of Fe-Ni alloys from sulfate solutions. Materials Transactions, 45(11), 3130–3135.

    Article  Google Scholar 

  59. Harris, T. M., & Clair, J. S. (1996). Testing the role of metal hydrolysis in the anomalous electrodeposition of Ni-Fe alloys. Journal of the Electrochemical Society, 143(12), 3918–3922.

    Article  Google Scholar 

  60. Permalloy, A. (1923). New Magnetic Material of Very High Permeability H. D. Arnold, G. W. Elmen First published: July 1923 Bell Labs Technical Journal 2(3): 101–111.

    Google Scholar 

  61. Venkatasetty, H. V. (1970). Electrodepostion of thin magnetic Permalloy films. Journal of the Electrochemical Society, 117(3), 403–407.

    Article  Google Scholar 

  62. Kovac, Z. (1971). The Effect of Superimposed A.C. on D.C. in Electrodeposition of Ni-Fe Alloys. Journal of The Electrochemical Society, 118(1), 51–57.

    Article  Google Scholar 

  63. Grimmett, D. L., Schwartz, M., & Nobe, K. (1993). A comparison of DC and pulsed Fe-Ni alloy deposits. Journal of the Electrochemical Society, 140(4), 1136–1340.

    Article  Google Scholar 

  64. Leith, S. D., Ramli, S., & Schwartz, D. T. (1999). Characterization of NixFe1-x (0.10 < x < 0.95) electrodeposition from a family of Sulfamate-chloride electrolytes. Journal of the Electrochemical Society, 146(4), 1431–1435.

    Article  Google Scholar 

  65. Jeffrey, M. I., & Ritchie, I. M. (2000). Journal of Electrochemical society, 147(9), 3257–3262.

    Article  Google Scholar 

  66. Wei, D., Chai, L., Ichino, R., & Okido, M. (1999). Journal of Electrochemical Society, 146(2), 559–563.

    Article  Google Scholar 

  67. Hu, Z., & Ritzdorf, T. (2007). Journal of Electrochemical Society, 154(10), D543–D549.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Riccardo Gianola .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Visalli, G., Gianola, R., Montagna, L. (2022). Galvanic Growth. In: Vigna, B., Ferrari, P., Villa, F.F., Lasalandra, E., Zerbini, S. (eds) Silicon Sensors and Actuators. Springer, Cham. https://doi.org/10.1007/978-3-030-80135-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-80135-9_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-80134-2

  • Online ISBN: 978-3-030-80135-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics