Skip to main content

Thin Film Deposition

  • Chapter
  • First Online:
Silicon Sensors and Actuators
  • 3097 Accesses

Abstract

Chemical vapor deposition (CVD) techniques play a key role in the fabrication process of any semiconductor device. In this chapter, we review two branches such as Low Pressure CVD (LPCVD) and Plasma Enhanced CVD (PECVD) with a special focus on the materials of interest for MEMS devices. LPCVD is the reference technique for the deposition of polysilicon membranes and thick low stress silicon nitride that are essentials for the fabrication of MEMS microphones. On the other hand, PECVD is the technique of choice for the deposition of all the dielectrics used for electrical and structural applications or for the passivation of the devices. The capability of tuning of film stress provides the unique opportunity to fabricate peculiar films such as neutral stress TEOS or very compressive silicon nitride to be employed for the fabrication of MEMS actuators.

Some selected cases of study are presented for both LPCVD and PECVD with the aim to underline how conventional deposition approaches can be exploited to obtain materials with tailored properties as requested by their use in advanced MEMS sensors and actuators.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kamins, T. (2012). Polycrystalline silicon for integrated circuits and displays (pp. 245–315). Springer Science & Business Media.

    Google Scholar 

  2. Stoffel, A., Kovacs, A., Kronast, W., & Muller, B. (1196). Journal of Micromechanics and Microengineering, 6, 1–13.

    Article  Google Scholar 

  3. French, P. J. (2002). Sensors and Actuators A, 99, 3–12.

    Article  Google Scholar 

  4. Ghodssi, R., & Lin, P. (2011). MEMS materials and processes handbook. Vol. 1 (pp. 45–88). Springer Science & Business Media.

    Book  Google Scholar 

  5. Dixit, P., & Henttinen, K. (2015). Via technologies for MEMS. In Handbook of silicon based MEMS materials and technologies (pp. 694–712). William Andrew Publishing.

    Chapter  Google Scholar 

  6. D. Henry, X. Baillin, V. Lapras, MH. Vaudaine, JM. Quemper, N. Sillon, B. Dunne, C. Hernandez, E. Vigier-Blanc, 2007 Proceedings 57th electronic components and technology conference. IEEE, 830–835 (2007).

    Google Scholar 

  7. Lee, E. G., & Rha, S. K. (1993). Journal of Materials Science, 28(23), 6279–6284.

    Article  Google Scholar 

  8. Maier-Schneider, D., Koprululu, A., Ballhausen Holm, S., & Obermeier, E. (1996). Journal of Micromechanics and Microengineering, 6, 436–446.

    Article  Google Scholar 

  9. Maier-Schneider, D., Maibach, J., & Obermeier, E. (1995). Journal of Micromechanics and Microengineering, 5(2), 121.

    Article  Google Scholar 

  10. D. G. Oei, S. L. McCarthy, MRS Online Proceedings Library Archive, 276 (1992).

    Google Scholar 

  11. Temple-Boyer, P., Imbernon, E., Rousset, B., & Scheid, E. (1998). MRS Online Proceedings Library Archive, 518.

    Google Scholar 

  12. Yang, J., Kahn, H., He, A., & Phillips, S. M. (2000). Journal of Microelectromechanical Systems, 9(4), 485–494.

    Article  Google Scholar 

  13. Biebl, M., Mulhern, G. T., & Howe, R. T. (1995). Proceedings of the international solid-state sensors and actuators conference-TRANSDUCERS’95. IEEE, 1, 198–201.

    Google Scholar 

  14. McMahon, J. J., Melzak, J. M., Zorman, C. A., Chung, J., & Mehregany, M. (1999). MRS Online Proceedings Library Archive, 605.

    Google Scholar 

  15. Krulevitch, P., Johnson, G. C., & Howe, R. T. (1992). MRS Online Proceedings Library Archive, 276.

    Google Scholar 

  16. Mulder, J. G., Eppenga, P., & Hendriks, M. (1990). Journal of the Electrochemical Society, 137(1), 273.

    Article  Google Scholar 

  17. Dehé, A., Wurzer, M., Füldner, M., & Krumbein, U. (2013, 2013). Proceedings of the European solid-state device research conference (ESSDERC). IEEE, 292–295.

    Google Scholar 

  18. Torkkeli, A., Rusanen, O., Saarilahti, J., Seppa, H., Sipola, H., & Hietanen, J. (2000). Sensors and Actuators A: Physical, 85(1–3), 116–123.

    Article  Google Scholar 

  19. Maboudian, R., & Howe, R. T. (1997). Journal of Vacuum Science & Technology B, 15(1).

    Google Scholar 

  20. Dana, S. S., Anderle, M., Rubloff, G. W., & Acovic, A. (1993). Applied Physics Letters, 63(10), 1387–1389.

    Article  Google Scholar 

  21. Sciuto, M., Papalino, L., Gagliano, C., Padalino, M., Coccorese, C., Mello, D., Renna, G., & Franco, G. (2005). Crystal Research and Technology: Journal of Experimental and Industrial Crystallography, 40(10–11), 955–957.

    Article  Google Scholar 

  22. Kaloyeros, A. E., Jove, F. A., Goff, J., & Arkles, B. (2017). ECS Journal of Solid State Science and Technology, 6(10), P691.

    Article  Google Scholar 

  23. Gardeniers, J. G. E., Tilmans, H. A. C., & Visser, C. C. G. (1996). Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 14(5), 2879–2892.

    Article  Google Scholar 

  24. Temple-Boyer, P., Rossi, C., Saint-Etienne, E., & Scheid, E. (1998). Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 16(4), 2003–2007.

    Article  Google Scholar 

  25. Toivola, Y., Thurn, J., Cook, R. F., Cibuzar, G., & Toivola, K. R. (2003). Journal of Applied Physics, 94(10), 6915–6922.

    Article  Google Scholar 

  26. Ghodssi, R., & Lin, P. (2011). MEMS materials and processes handbook. Springer.

    Book  Google Scholar 

  27. Porada, O. K., Ivashchenko, V. I., Ivashenko, L. A., Kozak, A. O., & Sytikov, O. O. (2019). Journal of Supplementary Materials, 41(1), 32–37.

    Google Scholar 

  28. Wang, N., David, N., et al. (1990). Process for PECVD of silicon oxide using TEOS decomposition, U.S. Patent No 4,892,753.

    Google Scholar 

  29. Lakshmanan, A., et al. (2008). Overall defect reduction for PECVD films, U.S. Patent Application No 11,508,545.

    Google Scholar 

  30. Nguyen, S. V. (1999). IBM Journal of Research and Development, 43(1.2), 109–126.

    Article  Google Scholar 

  31. Jyrki, K., Hannu, K., Martti, B., Riikka, P., Mari, L., Panu, P., Jaakko, S., Heini, R., & Anna, R. (2010). Low-temperature processes for MEMS device fabrication. In Advanced materials and Technologies for Micro/Nano-devices, sensors and actuators. Springer.

    Google Scholar 

  32. Markku, T., Mervi, P. K., Matthias, P., Horst, T., Teruaki, M., & Veikko, L. (2015). Handbook of silicon based MEMS materials and technologies. Elsevier.

    Google Scholar 

  33. Abbasi-Firouzjah, M., Hosseini, S. I., Shariat, M., & Shokri, B. (2013). Journal of Non-Crystalline Solids, 368, 86–92.

    Article  Google Scholar 

  34. Donald, M. M. (2001). Vacuum technology & coating (pp. 22–23).

    Google Scholar 

  35. Ay, F., & Aydinli, A. (2004). Optical Materials, 26, 33–46.

    Article  Google Scholar 

  36. Tarraf, A., Daleiden, J., Irmer, S., Prasai, D., & Hillmer, H. (2004). Journal of Micromechanics and Microengineering, 14, 317–323.

    Article  Google Scholar 

  37. Chung, C. K., Tsai, M. Q., Tsai, P. H., Lee, C., & Micromech, J. (2005). Journal of Micromechanics and Microengineering, 15, 136–142.

    Article  Google Scholar 

  38. Jeyakumar, R., & Verma, A. (2012). Materials Express, 2(3), 177–196.

    Article  Google Scholar 

  39. Street, R. A. (1991). Hydrogenated amorphous silicon (Cambridge solid state science series). Cambridge University Press.

    Book  Google Scholar 

  40. Pasqualina, S. M. (2000). Sensors and Actuators A, Physical, 82(1–3), 210–218.

    Google Scholar 

  41. Izhevskyi, V. A., et al. (2000). Cerâmica, 46(297), 0366–6913.

    Article  Google Scholar 

  42. Tong, L., Mehregany, M., & Tang, W. C. (1993). Proceedings IEEE micro electro mechanical systems. IEEE, 242–247.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luca Lamagna .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Campedelli, R., Lamagna, L., Nicoli, S., Nomellini, A. (2022). Thin Film Deposition. In: Vigna, B., Ferrari, P., Villa, F.F., Lasalandra, E., Zerbini, S. (eds) Silicon Sensors and Actuators. Springer, Cham. https://doi.org/10.1007/978-3-030-80135-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-80135-9_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-80134-2

  • Online ISBN: 978-3-030-80135-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics