Skip to main content

Magnetometers

  • Chapter
  • First Online:
Silicon Sensors and Actuators

Abstract

Magnetometers are nowadays largely used for consumer, industrial, and automotive applications. Among consumer applications, the main use is for compass, which is fundamental for navigation and map heading. On the other hand, magnetometers are often included together with magnets in systems monitoring a position or an angle in industrial and automotive applications, such as ABS wheel speed monitoring, steering angle measurement, or electrical motor control. Finally, magnetometers can be used as current sensors, granting no insertion losses and electrical insulation between current line and sensing circuitry. Magnetometers can be based on different kinds of transduction mechanisms. In this chapter, the focus will be on sensors which can be integrated in silicon-based technology platforms, typically developed for semiconductor industry. Among this kind of transducers, it is possible to include devices based on Hall effect, magnetoresistance (AMR, TMR, and GMR), magnetoinductance, Lorentz force, and fluxgates. In the following paragraphs, different structures for magnetic sensing will be described, in particular, Anisotropic Magnetoresistance (AMR), as well as the key parameters in AMR sensors design.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Popovic, R. S. (2003). Hall effect devices (IoP). CRC Press.

    Book  Google Scholar 

  2. Osamu, O. (2007). Compound semiconductor bulk materials and characterizations. World Scientific Publishing.

    Google Scholar 

  3. Ausserlechner, U., Motz, M., & Holliber, M. (November 2007). Compensation of the piezo-hall effect in integrated hall sensors on (100)-Si. IEEE Sensors Journal, 7(11).

    Google Scholar 

  4. Huber, S., Schott, C., & Paul, O. (2013, August). Package stress monitor to compensate for the piezo-hall effect in CMOS hall sensors. IEEE Sensors Journal, 13(8).

    Google Scholar 

  5. Ausserlechner, U. (2004, October). The piezo-Hall effect in n-silicon for arbitrary crystal orientation. In Proceedings of the IEEE sensors, Vienna, Austria, vol. 3, pp. 1149–1152.

    Google Scholar 

  6. Schurig, E., Demierre, M., Schott, C., & Popovic, R. S. (2002). A vertical hall device in CMOS high-voltage technology. Sensors and Actuators A, 97–98, 47–53.

    Article  Google Scholar 

  7. Bilotti, A., Monreal, G., & Vig, R. (June 1997). Monolithic magnetic hall sensor using dynamic quadrature offset cancellation. IEEE Journal of Solid-State Circuits, 32(6), 829–836.

    Article  Google Scholar 

  8. Schott, C., Racz, R., & Huber, S. (2005). Smart CMOS sensors with integrated magnetic concentrators, IEEE Sensors, Irvine, CA.

    Google Scholar 

  9. Popovic, R. S., Randjelovic, Z., & Manic, D. (2001). Integrated hall-effect magnetic sensors. Sensors and Actuators A, 91, 46–50.

    Article  Google Scholar 

  10. Langfelder, G., Buffa, C., Frangi, A., Tocchio, A., Lasalandra, E., & Longoni, A. (Sept. 2013). Z-Axis magnetometers for MEMS inertial measurement units using an industrial process. IEEE Transactions on Industrial Electronics, 60(9), 3983–3990.

    Article  Google Scholar 

  11. Marra, C. R., Laghi, G., Gadola, M., Gattere, G., Paci, D., Tocchio, A., & Langfelder, G. 100 nT/√Hz, 0.5 mm2 monolithic, multi-loop low-power 3-axis MEMS magnetometer. In Proceedings of the 2018 IEEE Micro Electro Mechanical Systems (MEMS), 2018 (IEEE Journals & Magazines), pp. 748–758.

    Google Scholar 

  12. Tumanski, S. (2007). Induction coil sensors – A review. Measurement Science and Technology, 18, R31–R46.

    Article  Google Scholar 

  13. Drljaca, P. M., Kejik, P., Vincent, F., Piguet, D., & Popovic, R. S. (October 2005). Low-power 2-D fully integrated CMOS fluxgate magnetometer. IEEE Sensors Journal, 5(5).

    Google Scholar 

  14. Osborn, J. A. (June 1945). Demagnetizing factors of the general ellipsoid. Physical Review, 67(11–12).

    Google Scholar 

  15. Tumanski, S. (2001). Thin film magnetoresistive sensors (IoP). CRC Press.

    Book  Google Scholar 

  16. Tumanski, S. (2011). Handbook of magnetic measurements (IoP). CRC Press.

    Google Scholar 

  17. Stutzke, N. A., Russek, S. E., & David, P. (2005). Pappas: Low-frequency noise measurements on commercial magnetoresistive magnetic field sensors. Journal of Applied Physics, 97.

    Google Scholar 

  18. Bonin, R., Schneidera, M. L., Silva, T. J., & Nibarger, J. P. (2005). Dependence of magnetization dynamics on magnetostriction in NiFe alloys. Journal of Applied Physics, 98.

    Google Scholar 

  19. Jury, J. C., Klaassen, K. B., van Peppen, J. C. L., & Wang, S. X. (Sept. 2002). Measurement and analysis of noise sources in giant magnetoresistive sensors up to 6 GHz. IEEE Transactions on Magnetics, 38(5), 3545–3555.

    Article  Google Scholar 

  20. Klaassen, K. B. (2007, February). Electrical low-frequency noise in tunneling Magnetoresistive heads: Phenomena and origins. IEEE Transactions on Magnetics, 43(2).

    Google Scholar 

  21. Spinelli, A. S., Minotti, P., Laghi, G., Langfelder, G., Lacaita, A. L., Paci, D. Simple model for the performance of realistic AMR magnetic field sensors. In Proceedings of the 2015 transducers – 2015 18th international conference on solid-state sensors, actuators and microsystems (TRANSDUCERS), 2015 (IEEE Journals & Magazines), pp. 2204–2207.

    Google Scholar 

  22. Kuijk, K., van Gestel, W., & Gorter, F. (September 1975). The barber pole, a linear magnetoresistive head. IEEE Transactions on Magnetics, 11(5), 1215–1217.

    Article  Google Scholar 

  23. Hauser, H., Fulmek, P. L., Haumer, P., Vopalensky, M., & Ripka, P. (2003). Flipping field and stability in anisotropic magnetoresistive sensors. Sensors and Actuators A, 106, 121–125.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dario Paci .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Paci, D., Cantoni, A., Allegato, G. (2022). Magnetometers. In: Vigna, B., Ferrari, P., Villa, F.F., Lasalandra, E., Zerbini, S. (eds) Silicon Sensors and Actuators. Springer, Cham. https://doi.org/10.1007/978-3-030-80135-9_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-80135-9_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-80134-2

  • Online ISBN: 978-3-030-80135-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics