Skip to main content

Small-World Propensity in Developmental Dyslexia After Visual Training Intervention

  • Conference paper
  • First Online:
Intelligent Computing

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 285))

Abstract

Altered functional networks in children with developmental dyslexia have been found in previous electroencephalographic studies using graph analysis. Whether learning with visual tasks can change the semantic network in this childhood disorder is still unclear. This study of the local and global topological properties of functional networks in multiple EEG frequency bands applies the method of small-world propensity in visual word/pseudo-word processing. The effect of visual training on the brain functional networks of dyslexics compared with controls was also studied. Results indicated that the network topology in dyslexics before the training is more integrated, compared to controls, and after training it becomes more segregated and similar to that of the controls in the theta, alpha, beta, and gamma bands for three graph measures. The pre-training dyslexics exhibited a reduced strength and betweenness centrality of the left anterior temporal and parietal regions in the θ, α, β1, and γ1-frequency bands, compared to the controls. In the brain networks of dyslexics, hubs have not appeared at the left-hemispheric/or both hemispheric temporal and parietal (α-word/γ-pseudoword discrimination), temporal and middle frontal cortex (θ, α-word), parietal and middle frontal cortex (β1-word), parietal and occipitotemporal cortices (θ-pseudoword), identified simultaneously in the networks of normally developing children. After remediation training, the hub distributions in theta, alpha, and beta1-frequency networks in dyslexics became similar to control ones, which more optimal global organization was compared to the less efficient network configuration in dyslexics for the first time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Stein, J.: Dyslexia: the role of vision and visual attention. Curr. Dev. Disord. Rep. 1, 267–280 (2014)

    Article  Google Scholar 

  2. Demb, J.B., Boynton, G.M., Best, M., Heeger, D.J.: Psychophysical evidence for a magnocellular pathway deficit in dyslexia. Vis. Res. 38(11), 1555–1559 (1998)

    Article  Google Scholar 

  3. Cornelissen, P.L., Hansen, P.C., Hutton, J.L., Evangelinou, V., Stein, J.F.: Magnocellular visual function and children’s single word reading. Vis. Res. 38(3), 471–482 (1998)

    Article  Google Scholar 

  4. Sperling, A.J., Lu, Z.-L., Manis, F.R., Seidenberg, M.S.: Deficits in perceptual noise exclusion in developmental dyslexia. Nat. Neurosci. 8(7), 862–863 (2005)

    Article  Google Scholar 

  5. Pammer, K., Wheatley, C.: Isolating the M(y)-cell response in dyslexia using the spatial frequency doubling illusion. Vis. Res. 41, 2139–2147 (2001)

    Article  Google Scholar 

  6. Benassi, M., Simonelli, L., Giovagnoli, S., Bolzani, R.: Coherence motion perception in developmental dyslexia: a meta-analysis of behavioral studies. Dyslexia 16, 341–357 (2010)

    Article  Google Scholar 

  7. Boets, B., Vandermosten, M., Cornelissen, P., Wouters, J., Ghesquière, P.: Coherent motion sensitivity and reading development in the transition from pre-reading to reading stage. Child Dev. 82, 854–869 (2011)

    Article  Google Scholar 

  8. Coltheart, M., Rastle, K., Perry, C., Langdon, R., Ziegler, J.: DRC: a dual route cascaded model of visual word recognition and reading aloud. Psychol. Rev. 108(1), 204–256 (2001)

    Article  Google Scholar 

  9. Castles, A., Coltheart, M.: Varieties of developmental dyslexia. Cognition 47(2), 149–180 (1993)

    Article  Google Scholar 

  10. Funnell, E.: Phonological processes in reading: new evidence from acquired dyslexia. Br. J. Psychol. 74(Pt 2), 159–180 (1983)

    Article  Google Scholar 

  11. Siegel, L.S.: The development of reading. In: Reese, H.W. (ed.) Advances in Child Development and Behavior, vol. 24, pp. 63–97. Academic Press, San Diego (1993)

    Google Scholar 

  12. Ebrahimi, L., Pouretemad, H., Khatibi, A., Stein, J.: Magnocellular based visual motion training improves reading in Persian. Sci. Rep. 9, 1142 (2019)

    Article  Google Scholar 

  13. Patterson, K., Hodges, J.R.: Deterioration of word meaning: implications for reading. Neuropsychologia 30(12), 1025–1040 (1992)

    Article  Google Scholar 

  14. Hodges, J.R., Patterson, K.: Semantic dementia: a unique clinicopathological syndrome. Lancet Neurol. 6(11), 1004–1014 (2007)

    Article  Google Scholar 

  15. Eden, G.F., VanMeter, J.W., Rumsey, J.M., Maisog, J.M., Woods, R.P., Zeffiro, T.A.: Abnormal processing of visual motion in dyslexia revealed by functional brain imaging. Nature 382(6586), 66–69 (1996)

    Article  Google Scholar 

  16. Wilmer, J.B., Richardson, A.J., Chen, Y., Stein, J.F.: Two visual motion processing deficits in developmental dyslexia associated with different reading skills deficits. J. Cogn. Neurosci. 16, 528–540 (2004)

    Article  Google Scholar 

  17. Lalova, J., et al.: Vision and visual attention of children with developmental dyslexia. Psychol. Res. 21, 247–261 (2018)

    Google Scholar 

  18. Facoetti, A., Lorusso, M.L., Paganoni, P., Umiltà, C., Mascetti, G.G.: See more: The role of visuospatial attention in developmental dyslexia: evidence from a rehabilitation study. Cogn. Brain Res. 15(2), 154–164 (2003)

    Article  Google Scholar 

  19. Sperling, A.J., Lu, Z.-L., Manis, F.R., Seidenberg, M.S.: Selective magnocellular deficits in dyslexia: a “phantom contour” study. Neuropsychologia 41(10), 1422–1429 (2003)

    Article  Google Scholar 

  20. Goodale, M.A., Westwood, D.A.: An evolving view of duplex vision: separate but interacting cortical pathways for perception and action. Curr. Opin. Neurobiol. 14(2), 203–211 (2004)

    Article  Google Scholar 

  21. Lawton, T.: Improving magnocellular function in the dorsal stream remediates reading deficits. Optom. Vis. Dev. 42, 142–154 (2011)

    Google Scholar 

  22. Chouake, T., Levy, T., Javitt, D.C., Lavidor, M.: Magnocellular training improves visual word recognition. Front. Hum. Neurosci. 6, 14 (2012)

    Article  Google Scholar 

  23. Qian, Y., Bi, H.Y.: The effect of magnocellular-based visual-motor intervention on Chinese children with developmental dyslexia. Front. Psychol. 6, 1529 (2015)

    Article  Google Scholar 

  24. Lawton, T.: Improving dorsal stream function in dyslexics by training figure/ground motion discrimination improves attention, reading fluency, and working memory. Front. Hum. Neurosci. 10, 397 (2016)

    Article  Google Scholar 

  25. Lawton, T., Shelley-Tremblay, J.: Training on movement figure-ground discrimination remediates low-level visual timing deficits in the dorsal stream, improving high-level cognitive functioning, including attention, reading fluency, and working memory. Front. Hum. Neurosci. 11, 236 (2017)

    Article  Google Scholar 

  26. Lalova, J., Dushanova, J., Kalonkina, A., Tsokov, S.: Application of specialised psychometric tests and training practices in children with developmental dyslexia. Psychol. Res. 22, 271–283 (2019)

    Google Scholar 

  27. Kravitz, D.J., Saleem, K.S., Baker, C.I., Mishkin, M.: A new neural framework for visuospatial processing. Nat. Rev. Neurosci. 12(4), 217–230 (2011)

    Article  Google Scholar 

  28. Jobard, G., Crivello, F., Tzourio-Mazoyer, N.: Evaluation of the dual route theory of reading: a meta-analysis of 35 neuroimaging studies. Neuroimage 20(2), 693–712 (2003)

    Google Scholar 

  29. Mechelli, A., Gorno-Tempini, M.L., Price, C.J.: Neuroimaging studies of word and pseudoword reading: consistencies, inconsistencies, and limitations. J. Cogn. Neurosci. 15(2), 260–71 (2003)

    Google Scholar 

  30. Cuppini, C., Ursino, M., Magosso, E., Ross, L.A., Foxe, J.J., Molholm, S.: A computational analysis of neural mechanisms underlying the maturation of multisensory speech integration in neurotypical children and those on the Autism Spectrum. Front. Hum. Neurosci. 11, 518 (2017)

    Article  Google Scholar 

  31. Dekker, T.M., Ban, H., van der Velde, B., Sereno, M.I., Welchman, A.E., Nardini, M.: Late development of cue integration is linked to sensory fusion in cortex. Curr. Biol. 25(21), 2856–2861 (2015)

    Article  Google Scholar 

  32. Magosso, E., Cuppini, C., Bertini, C.: Audiovisual rehabilitation in hemianopia: a model-based theoretical investigation. Front. Comput. Neurosci. 11, 113 (2017)

    Article  Google Scholar 

  33. Ursino, M., Cuppini, C., Magosso, E.: A neural network for learning the meaning of objects and words from a featural representation. Neural Netw. 63, 234–253 (2015)

    Article  MATH  Google Scholar 

  34. Cohen, J.R., D’Esposito, M.: The segregation and integration of distinct brain networks and their relationship to cognition. J. Neurosci. 36(48), 12083–12094 (2016)

    Article  Google Scholar 

  35. Rubinov, M., Sporns, O.: Complex network measures of brain connectivity: uses and interpretations. Neuroimage 52, 1059–1069 (2010)

    Article  Google Scholar 

  36. Muldoon, S.F., Bridgeford, E.W., Bassett, D.S.: Small-world propensity and weighted brain networks. Sci. Rep. 6, 22057 (2016)

    Article  Google Scholar 

  37. Bassett, D.S., Bullmore, E.T.: Small-world brain networks revisited. In: The Neuroscientist, pp. 1–18 (2016)

    Google Scholar 

  38. Tsujimoto, S.: The prefrontal cortex: functional neural development during early childhood. Neuroscientist 14, 345–358 (2008)

    Article  Google Scholar 

  39. Medaglia, J.D., Lynall, M.-E., Bassett, D.S.: Cognitive network neuroscience. J. Cogn. Neurosci. 27, 1471–1491 (2015)

    Article  Google Scholar 

  40. Bassett, D.S., Nelson, B.G., Mueller, B.A., Camchong, J., Lim, K.O.: Altered resting state complexity in schizophrenia. Neuroimage 59, 2196–2207 (2012)

    Article  Google Scholar 

  41. Binder, J.R., Desai, R.H., Graves, W.W., Conant, L.L.: Where is the semantic system? A critical review and meta-analysis of 120 functional neuroimaging studies. Cereb. Cortex 19, 2767–2796 (2009)

    Article  Google Scholar 

  42. Farahibozorg, S., Henson, R.N., Woollams, A.M., Hauk, O.: Distinct roles for the Anterior Temporal Lobe and Angular Gyrus in the spatio-temporal cortical semantic network. In: bioRxiv, pp. 1–34 (2019)

    Google Scholar 

  43. Tomasello, R., Garagnani, M., Wennekers, T., Pulvermuller, F.: Brain connections of words, perceptions and actions: a neurobiological model of spatio-temporal semantic activation in the human cortex. Neuropsychologia 98, 111–129 (2017)

    Article  Google Scholar 

  44. Annett, M.: A classification of hand preference by association analysis. Br. J. Psychol. 61, 303–321 (1970)

    Article  Google Scholar 

  45. Raven, J., Raven, J.C., Court, J.H.: Manual for Raven’s Progressive Matrices and Vocabulary Scales. Section 2: The Coloured Progressive Matrices. Oxford Psychologists Press, Oxford; The Psychological Corporation, San Antonio (1998)

    Google Scholar 

  46. Raichev, P., Geleva, T., Valcheva, M., Rasheva, M., Raicheva, M.: Protocol on neurological and neuropsychological studies of children with specific learning disabilities. In: Dr. Bogorov, I. (ed.) The Integrated Learning and Resource Teacher Journal, Sofia (2005). (in Bulgarian)

    Google Scholar 

  47. Sartori, G., Remo, J., Tressoldi, P.E.: DDE-2, Battery for the Developmental Dyslexia and Evolutionary Disorders-2, 1995, Updated and revised edition for the evaluation of dyslexia (2007)

    Google Scholar 

  48. Matanova, V., Todorova, E.: DDE-2 Test Battery for Evaluation of Dyslexia of Development - Bulgarian Adaptation. OS Bulgaria Ltd (2013)

    Google Scholar 

  49. Kalonkina, A., Lalova, J.: Normative indicators for the test battery for a written speech assessment. In: Logopedic Centre Romel, pp. 30–38 (2016). (in Bulgarian)

    Google Scholar 

  50. Girolami-Boulinier, A.: Contrôle des Aptitudes à la Lecture et à l'Ecriture (CALE). Delachaux et Niestlé, Neuchâtel (1985). 1974

    Google Scholar 

  51. Yakimova, R.: Abnormalities of Written Speech. Rommel Publishing House (2004). (in Bulgarian)

    Google Scholar 

  52. Nikolova, T.: Frequency dictionary of the Bulgarian conversational language. In: Science and Art, Sofia, Bulgarian (1987)

    Google Scholar 

  53. Joshi, M.R., Falkenberg, H.K.: Development of radial optic flow pattern sensitivity at different speeds. Vis. Res. 110(Pt A), 68–75 (2015)

    Google Scholar 

  54. Ross-Sheehy, S., Oakes, L.M., Luck, S.J.: Exogenous attention influences visual short-term memory in infants. Dev. Sci. 14(3), 490–501 (2011)

    Article  Google Scholar 

  55. Liao, L.D., Wang, I.J., Chen, S.F., Chang, J.Y., Lin, C.T.: Design, fabrication and experimental validation of a novel dry-contact sensor for measuring electroencephalography signals without skin preparation. Sensors 11, 5819–5834 (2011)

    Article  Google Scholar 

  56. Dushanova, J., Christov, M.: Auditory event-related brain potentials for an early discrimination between normal and pathological brain aging. Neural Regen. Res. 8(15), 1390–1399 (2013)

    Google Scholar 

  57. Stam, C.J., Nolte, G., Daffertshofer, A.: Phase lag index: assessment of functional connectivity from multi channel EEG and MEG with diminished bias from common sources. Hum. Brain Mapp. 28, 1178–1193 (2007)

    Article  Google Scholar 

  58. Vinck, M., Oostenveld, R., vanWingerden, M., Battaglia, F., Pennartz, C.M.A.: An improved index of phase-synchronization for electrophysiological data in the presence of volume-conduction, noise and sample-size bias. Neuroimage 55, 1548–1565 (2011)

    Article  Google Scholar 

  59. Onnela, J.-P., Saramäki, J., Kertész, J., Kaski, K.: Intensity and coherence of motifs in weighted complex networks. Phys. Rev. E 71, 065103 (2005)

    Google Scholar 

  60. Boccaletti, S., Latora, V., Moreno, Y., Chavez, M., Hwanga, D.-U.: Complex networks: structure and dynamics. Phys. Rep. 424, 175–308 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  61. Bullmore, E., Sporns, O.: Complex brain networks: graph theoretical analysis of structural and functional systems. Nat. Rev. Neurosci. 10, 186–198 (2009)

    Article  Google Scholar 

  62. Stam, C.J., van Straaten, E.C.: The organization of physiological brain networks. Clin. Neurophysiol. 123, 1067–1087 (2012)

    Article  Google Scholar 

  63. Xia, M., Wang, J., He, Y.: BrainNet Viewer: a network visualization tool for human brain connectomics. PloS One 8, e68910 (2013)

    Google Scholar 

  64. Maris, E., Oostenveld, R.: Nonparametric statistical testing of EEG- and MEG-data. J. Neurosci. Methods 164, 177–190 (2007)

    Article  Google Scholar 

  65. Mason, M., Newton, M.: A rank statistics approach to the consistency of the general bootstrap. Ann. Statist. 20, 1611–1624 (1990)

    MathSciNet  MATH  Google Scholar 

  66. Vourkas, M., et al.: Simple and difficult mathematics in children: a minimum spanning tree EEG network analysis. Neurosci. Lett. 576, 28–33 (2014)

    Article  Google Scholar 

  67. Krienen, F., Yeo, T., Buckner, R.: Reconfigurable task-dependent functional coupling modes cluster around a core functional architecture. Philos. Trans. R. Soc. B Biol. Sci. 369, 20130526 (2014)

    Google Scholar 

  68. Frye, R.E., Liederman, J., Fisher, J.M., Wu, M.-H.: Laterality of temporoparietal causal connectivity during the prestimulus period correlates with phonological decoding task performance in dyslexic and typical readers. Cereb. Cortex 22, 1923–1934 (2012)

    Article  Google Scholar 

  69. Koyama, M.S., et al.: Cortical signatures of dyslexia and remediation: an intrinsic functional connectivity approach. PLoS One 8, e55454 (2013)

    Google Scholar 

  70. Hagmann, P., et al.: White matter maturation reshapes structural connectivity in the late developing human brain. Proc. Natl. Acad. Sci. U.S.A. 107, 19067–19072 (2010)

    Article  Google Scholar 

  71. Gaudet, I., Hüsser, A., Vannasing, P., Gallagher, A.: Functional brain connectivity of language functions in children revealed by EEG and MEG: a systematic review. Front. Hum. Neurosci. 14, 62 (2020)

    Article  Google Scholar 

  72. Bullmore, E., Sporns, O.: The economy of brain network organization. Nat. Rev. Neurosci. 13, 336–349 (2012)

    Article  Google Scholar 

  73. Finn, E.S., et al.: Disruption of functional networks in dyslexia: a whole-brain, data-driven analysis of connectivity. Biol. Psychiatry 76, 397–404 (2014)

    Article  Google Scholar 

  74. Ercsey-Ravasz, M., et al.: A predictive network model of cerebral cortical connectivity based on a distance rule. Neuron 80, 184–197 (2013)

    Article  Google Scholar 

  75. von Stein, A., Sarnthein, J.: Different frequencies for different scales of cortical integration: from local gamma to long range alpha/theta synchronization. Int. J. Psychophysiol. 38, 301–313 (2000)

    Article  Google Scholar 

  76. Sauseng, P., Klimesch, W., Schabus, M., Doppelmayr, M.: Fronto-parietal EEG coherence in theta and upper alpha reflect central executive functions of working memory. Int. J. Psychophysiol. 57, 97–103 (2005)

    Article  Google Scholar 

  77. Mizuhara, H., Yamaguchi, Y.: Human cortical circuits for central executive function emerge by theta phase synchronization. Neuroimage 36, 232–244 (2007)

    Article  Google Scholar 

  78. Sauseng, P., Hoppe, J., Klimesch, W., Gerloff, C., Hummel, F.C.: Dissociation of sustained attention from central executive functions: local activity and interregional connectivity in the theta range. Eur. J. Neurosci. 25, 587–593 (2007)

    Article  Google Scholar 

  79. Klimesch, W.: EEG alpha and theta oscillations reflect cognitive and memory performance: a review and analysis. Brain Res. Rev. 29, 169–195 (1999)

    Google Scholar 

  80. Arns, M., Peters, S.: Different brain activation patterns in dyslexic children: evidence from EEG power and coherence patterns for the double-deficit theory of dyslexia. J. Integr. Neurosci. 6, 175–190 (2007)

    Article  Google Scholar 

  81. Goswami, U.: A temporal sampling framework for developmental dyslexia. Trends Cog. Sci. 15, 3–10 (2011)

    Article  Google Scholar 

  82. Spironelli, C., Penolazzi, B., Angrilli, A.: Dysfunctional hemispheric asymmetry of theta and beta EEG activity during linguistic tasks in developmental dyslexia. Biol. Psychol. 77, 123–131 (2008)

    Article  Google Scholar 

  83. Bastiaansen, M.C.M., Oostenveld, R., Jensen, O., Hagoort, P.: I see what you mean: theta power increases are involved in the retrieval of lexical semantic information. Brain Lang. 106, 15–28 (2008)

    Article  Google Scholar 

  84. van Diessen, E., et al.: Opportunities and methodological challenges in EEG and MEG resting state functional brain network research. Clin. Neurophysiol. 126, 1468–1481 (2015)

    Article  Google Scholar 

  85. Vourkas, M., et al.: Dynamic task-specific brain network connectivity in children with severe reading difficulties. Neurosci. Lett. 488, 123–128 (2011)

    Article  Google Scholar 

  86. Sandak, R., Mencl, W.E., Frost, S.J., Pugh, K.R.: The neurobiological basis of skilled and impaired reading: recent findings and new directions. J. Sci. Stud. Read. 8(3), 273–292 (2004)

    Article  Google Scholar 

  87. Koessler, L., et al.: Automated cortical projection of EEG sensors: anatomical correlation via the international 10–10 system. Neuroimage 46, 64–72 (2009)

    Article  Google Scholar 

  88. Giacometti, P., Perdue, K.L., Diamond, S.G.: Algorithm to find high density EEG scalp coordinates and analysis of their correspondence to structural and functional regions of the brain. J. Neurosci. Methods 229, 84–96 (2014)

    Article  Google Scholar 

  89. Bastiaansen, M.C.M., van der Linden, M., Keurs, M.T., Dijkstra, T., Hagoort, P.: Theta responses are involved in lexical-semantic retrieval during language processing. J. Cogn. Neurosci. 17(3), 530–541 (2005)

    Article  Google Scholar 

  90. Meyer, L., Obleser, J., Friederici, A.D.: Left parietal alpha enhancement during working memory-intensive sentence processing. Cortex 49(3), 711–721 (2013)

    Article  Google Scholar 

  91. Weiss, S., Mueller, H.M., Schack, B., King, J.W., Kutas, M., Rappelsberger, P.: Increased neuronal communication accompanying sentence comprehension. Int. J. Psychophysiol. 57(2), 129–141 (2005)

    Article  Google Scholar 

  92. Lewis, A.G., Wang, L., Bastiaansen, M.C.M.: Fast oscillatory dynamics during language comprehension: unification versus maintenance and prediction? Brain Lang. 148, 51–63 (2015)

    Article  Google Scholar 

  93. Lewis, A.G., Bastiaansen, M.: A predictive coding framework for rapid neural dynamics during sentence-level language comprehension. Cortex 68, 155–168 (2015)

    Article  Google Scholar 

  94. Rice, G.E., Lambon Ralph, M.A., Hoffman, P.: The roles of left versus right anterior temporal lobes in conceptual knowledge: an ALE meta-analysis of 97 functional neuroimaging studies. Cereb. Cortex 25, 4374–4391 (2015)

    Article  Google Scholar 

  95. Hagoort, P.: MUC (Memory, Unification, Control) and beyond. Front. Psychol. 4, 416 (2013)

    Article  Google Scholar 

  96. Michalareas, G., Michalareas, G., Vezoli, J., Van Pelt, S., Schoffelen J. M., Kennedy, H., Fries., P.: Alpha-beta and gamma rhythms subserve feedback and feedforward influences among human visual cortical areas. Neuron 89, 384–397 (2016)

    Google Scholar 

  97. Bressler, S.L., Richter, C.G.: Interareal oscillatory synchronization in top-down neocortical processing. Current Opin. Neurobiol. 31C, 62e66 (2015)

    Google Scholar 

  98. Behrmann, M., Plaut, D.C.: Hemispheric organization for visual object recognition: a theoretical account and empirical evidence. Perception 49, 373–404 (2020)

    Article  Google Scholar 

  99. Bastos, A.M., Usrey, W.M., Adams, R.A., Mangun, G.R., Fries, P., Friston, K.J.: Canonical microcircuits for predictive coding. Neuron 76, 695–711 (2012)

    Article  Google Scholar 

  100. Lallier, M., Tainturier, M.J., Dering, B., Donnadieu, S., Valdois, S., Thierry, G.: Behavioral and ERP evidence for amodal sluggish attentional shifting in developmental dyslexia. Neuropsychologia 48, 4125–4135 (2010)

    Article  Google Scholar 

  101. Harrar, V., Tammam, J., Pérez-Bellido, A., Pitt, A., Stein, J., Spence, C.: Multisensory integration and attention in developmental dyslexia. Curr Biol. 24, 531–535 (2014)

    Article  Google Scholar 

  102. Binder, J.R., Westbury, C.F., McKiernan, K.A., Possing, E.T., Medler, D.A.: Distinct brain systems for processing concrete and abstract concepts. J. Cogn. Neurosci. 17, 905–917 (2005)

    Article  Google Scholar 

  103. Dhond, R.P., Witzel, T., Dale, A.M., Halgren, E.: Spatiotemporal cortical dynamics underlying abstract and concrete word reading. Hum. Brain Mapp. 28, 355–362 (2007)

    Article  Google Scholar 

  104. Taskov, T., Dushanova, J.: Reading-network in developmental dyslexia before and after visual training. Symmetry 12(11), 1842 (2020)

    Article  Google Scholar 

Download references

Acknowledgments

The research was supported by grant No DN05–14-2016 from the Bulgarian Science Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juliana Dushanova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Taskov, T., Dushanova, J. (2021). Small-World Propensity in Developmental Dyslexia After Visual Training Intervention. In: Arai, K. (eds) Intelligent Computing. Lecture Notes in Networks and Systems, vol 285. Springer, Cham. https://doi.org/10.1007/978-3-030-80129-8_18

Download citation

Publish with us

Policies and ethics