Skip to main content

On Fairness in Voting Consensus Protocols

Part of the Lecture Notes in Networks and Systems book series (LNNS,volume 284)

Abstract

Voting algorithms have been widely used as consensus protocols in the realization of fault-tolerant systems. These algorithms are best suited for distributed systems of nodes with low computational power or heterogeneous networks, where different nodes may have different levels of reputation or weight. Our main contribution is the construction of a fair voting protocol in the sense that the influence of the eventual outcome of a given participant is linear in its weight. Specifically, the fairness property guarantees that any node can actively participate in the consensus finding even with low resources or weight. We investigate effects that may arise from weighted voting, such as centralization, loss of anonymity, scalability, and discuss their relevance to protocol design and implementation.

Keywords

  • Fairness
  • Voting consensus protocols
  • Heterogeneous network
  • Sybil attack

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-80126-7_65
  • Chapter length: 13 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   229.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-80126-7
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   299.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.
Fig. 3.

Notes

  1. 1.

    https://github.com/IOTAledger/fpc-sim.

References

  1. Neil, B., Shields, L.C., Margolin, N.B.: A survey of solutions to the sybil attack (2005)

    Google Scholar 

  2. Mossel, E., Neeman, J., Tamuz, O.: Majority dynamics and aggregation of information in social networks. Auton. Agent. Multi-Agent Syst. 28, 408–429 (2014)

    CrossRef  Google Scholar 

  3. Gács, P., Kurdyumov, G.L., Levin, L.A.: One-dimensional Uniform Arrays that Wash out Finite Islands. In: Problemy Peredachi Informatsii (1978)

    Google Scholar 

  4. Moreira, A.A., Mathur, A., Diermeier, D., Amaral, L.: Efficient system-wide coordination in noisy environments. Proc. Natl. Acad. Sci. U.S.A. 101, 12085–12090 (2004)

    Google Scholar 

  5. Kar, S., Moura, J.M.F.: Distributed average consensus in sensor networks with random link failures. In: 2007 IEEE International Conference on Acoustics, Speech and Signal Processing - ICASSP 2007, vol. 2, pp. II–1013–II–1016, April 2007

    Google Scholar 

  6. Cruise, J., Ganesh, A.: Probabilistic consensus via polling and majority rules. Queueing Syst. 78(2), 99–120 (2014)

    MathSciNet  CrossRef  Google Scholar 

  7. Gogolev, A., Marchenko, N., Marcenaro, L., Bettstetter, C.: Distributed binary consensus in networks with disturbances. ACM Trans. Auton. Adapt. Syst. 10, 19:1–19:17 (2015)

    Google Scholar 

  8. Popov, S., Buchanan, W.J.: FPC-BI: fast probabilistic consensus within byzantine infrastructures. J. Parallel Distrib. Comput. 147, 77–86 (2021)

    CrossRef  Google Scholar 

  9. Capossele, A., Mueller, S., Penzkofer, A.: Robustness and efficiency of leaderless probabilistic consensus protocols within byzantine infrastructures (2019)

    Google Scholar 

  10. Banisch, S., Araújo, T., Louçã, J.: Opinion dynamics and communication networks. Adv. Complex Syst. 95–111 (2010)

    Google Scholar 

  11. Niu, H.-L., Wang, J.: Entropy and recurrence measures of a financial dynamic system by an interacting voter system. Entropy 2590–2605 (2015)

    Google Scholar 

  12. Przybyła, P., Sznajd-Weron, K., Tabiszewski, M.: Exit probability in a one-dimensional nonlinear \(q\)-voter model. Phys. Rev. E (2011)

    Google Scholar 

  13. Castellano, C., Fortunato, S., Loreto, V.: Statistical physics of social dynamics. Rev. Modern Phys. 591 (2009)

    Google Scholar 

  14. Rabin, M.: Incorporating fairness into game theory. Department of Economics, UC Berkeley (1991)

    Google Scholar 

  15. Popov, S., et al.: The coordicide (2020)

    Google Scholar 

  16. Vigneri, L., Welz, W., Gal, A., Dimitrov, V.: Achieving fairness in the tangle through an adaptive rate control algorithm. In: 2019 IEEE International Conference on Blockchain and Cryptocurrency (ICBC), pp. 146–148, May 2019

    Google Scholar 

  17. Vigneri, L., Welz, W.: On the fairness of distributed ledger technologies for the internet of things. In: 2020 IEEE International Conference on Blockchain and Cryptocurrency (ICBC) (2020)

    Google Scholar 

  18. Gambarelli, G.: Power indices for political and financial decision making: a review. Ann. Oper. Res. 51(4), 163–173 (1994)

    MathSciNet  CrossRef  Google Scholar 

  19. Arpan Mukhopadhyay, R.R., Mazumdar, R.R.: Voter and Majority Dynamics with Biased and Stubborn Agents https://arxiv.org/abs/2003.02885 (2020)

  20. Chen, X., Papadimitriou, C., Roughgarden, T.: An axiomatic approach to block rewards. In: Proceedings of the 1st ACM Conference on Advances in Financial Technologies, (New York, NY, USA), pp. 124–131. Association for Computing Machinery (2019)

    Google Scholar 

  21. Popov, S.: A probabilistic analysis of the Nxt forging algorithm. Ledger 1, 69–83 (2016)

    CrossRef  Google Scholar 

  22. Leonardos, S., Reijsbergen, D., Piliouras, G.: Weighted voting on the blockchain: improving consensus in proof of stake protocols (2020)

    Google Scholar 

  23. Leshno, J., Strack, P.: Bitcoin: an impossibility theorem for proof-of-work based protocols. Cowles Foundation Discussion Paper, no. 2204R (2019)

    Google Scholar 

  24. Kondor, D., Pósfai, M., Csabai, I., Vattay, G.: Do the rich get richer? An empirical analysis of the bitcoin transaction network. PloS One 9, e86197 (2014)

    Google Scholar 

  25. Jones, C.I.: Pareto and Piketty: the macroeconomics of top income and wealth inequality. J. Econ. Perspect. 29, 29–46 (2015)

    CrossRef  Google Scholar 

  26. Tao, T.: Benford’s law, Zipf’s law, and the Pareto distribution. https://terrytao.wordpress.com/2009/07/03/benfords-law-zipfs-law-and-the-pareto-distribution/ (2009)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olivia Saa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Müller, S., Penzkofer, A., Camargo, D., Saa, O. (2021). On Fairness in Voting Consensus Protocols. In: Arai, K. (eds) Intelligent Computing. Lecture Notes in Networks and Systems, vol 284. Springer, Cham. https://doi.org/10.1007/978-3-030-80126-7_65

Download citation