Skip to main content

Committee Selection in DAG Distributed Ledgers and Applications

Part of the Lecture Notes in Networks and Systems book series (LNNS,volume 284)

Abstract

In this paper, we propose several solutions to the committee selection problem among participants of a DAG distributed ledger. Our methods are based on a ledger intrinsic reputation model that serves as a selection criterion. The main difficulty arises from the fact that the DAG ledger is a priori not totally ordered and that the participants need to reach a consensus on participants’ reputation.

Furthermore, we outline applications of the proposed protocols, including: (i) self-contained decentralized random number beacon; (ii) selection of oracles in smart contracts; (iii) applications in consensus protocols and sharding solutions.

We conclude with a discussion on the security and liveness of the proposed protocols by modeling reputation with a Zipf law.

Keywords

  • Decentralized systems
  • Distributed ledgers
  • DAG
  • Reputation model
  • Security

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-80126-7_59
  • Chapter length: 18 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   229.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-80126-7
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   299.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

References

  1. Bonneau, J., Clark, J., Goldfeder, S.: On bitcoin as a public randomness source. Cryptology ePrint Archive, Report 2015/1015 (2015). https://eprint.iacr.org/2015/1015

  2. Buterin, V., Griffith, V.: Casper the Friendly Finality Gadget. ArXiv e-prints, page arXiv:1710.09437, October 2017

  3. Capossele, A., Mueller, S., Penzkofer, A.: Robustness and efficiency of voting consensus protocols within byzantine infrastructures. Blockchain: Res. Appl. 2(1), 100007 (2021). https://doi.org/10.1016/j.bcra.2021.100007. https://www.sciencedirect.com/science/article/pii/S2096720921000026. ISSN 2096–7209

  4. Castro, M., Liskov, B.: Practical byzantine fault tolerance. In: Proceedings of the Third Symposium on Operating Systems Design and Implementation, OSDI 1999, pp. 173–186. USENIX Association, USA (1999)

    Google Scholar 

  5. Chu, S., Wang, S.: The curses of blockchain decentralization (2018)

    Google Scholar 

  6. Churyumov, A.: Byteball: A decentralized system for storage and transfer of value (2016)

    Google Scholar 

  7. Croman, K., et al.: On scaling decentralized blockchains. In: Clark, J., Meiklejohn, S., Ryan, P., Wallach, D., Brenner, M., Rohloff, K. (eds.) FC 2016, pp. 106–125. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53357-4_8

  8. Dang, H., Dinh, T.T.A., Loghin, D., Chang, E.-C., Lin, Q., Ooi, B.C.: Towards scaling blockchain systems via sharding. In: Proceedings of the 2019 International Conference on Management of Data, SIGMOD 2019, pp. 123–140. Association for Computing Machinery, New York (2019)

    Google Scholar 

  9. Ellis, S., Juels, A., Nazarov, S.: Chainlink a decentralized oracle network (2017)

    Google Scholar 

  10. Ethereum Foundation. RANDAO: A DAO working as RNG of Ethereum

    Google Scholar 

  11. TRON Foundation. Tron advanced decentralized blockchain platform (2017). https://tron.network/static/doc/white_paper_v_2_0.pdf

  12. Gagol, A., Leśniak, D., Straszak, D., Świetek, M.: Aleph: Efficient Atomic Broadcast in Asynchronous Networks with Byzantine Nodes. arXiv e-prints, page arXiv:1908.05156, August 2019

  13. Giudici, G., Milne, A., Vinogradov, D.: Cryptocurrencies: market analysis and perspectives. J. Ind. Bus. Econ. 47(18), 1972–4977 (2020)

    Google Scholar 

  14. Huang, C., et al.: Repchain: A reputation based secure, fast and high incentive blockchain system via sharding. CoRR, abs/1901.05741 (2019)

    Google Scholar 

  15. IOTA Foundation. IOTA Reference Implementation. Github

    Google Scholar 

  16. Jones, C.I.: Pareto and Piketty: the macroeconomics of top income and wealth inequality. J. Econ. Perspect. 29(1), 29–46 (2015)

    CrossRef  Google Scholar 

  17. Kim, H., Laskowski, M., Nan, N.: A first step in the co-evolution of blockchain and ontologies: towards engineering an ontology of governance at the blockchain protocol level. SSRN Electron. J. (2018)

    Google Scholar 

  18. Kusmierz, B., Sanders, W.R., Penzkofer, A., Capossele, A.T., Gal, A.: Properties of the tangle for uniform random and random walk tip selection. In: 2019 IEEE International Conference on Blockchain (Blockchain), pp. 228–236 (2019)

    Google Scholar 

  19. Larimer, D.: EOS.IO White Paper (2017). https://github.com/EOSIO/Documentation/blob/master/TechnicalWhitePaper.md

  20. Colin, L.: Nano: A feeless distributed cryptocurrency network (2017)

    Google Scholar 

  21. Luu, L., Narayanan, V., Zheng, C., Baweja, K., Gilbert, S., Saxena., P.: A secure sharding protocol for open blockchains. In: Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security, pp. 17–30. ACM (2016)

    Google Scholar 

  22. Miller, A., Xia, Y., Croman, K., Shi, E., Song, D.: The honey badger of BFT protocols. In: Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security, CCS 2016, pp. 31–42. Association for Computing Machinery, New York (2016)

    Google Scholar 

  23. Nakamoto, S.: Bitcoin: A peer-to-peer electronic cash system (2008)

    Google Scholar 

  24. Penzkofer, A., Kusmierz, B., Capossele, A., Sanders, W., Saa, O.: Parasite chain detection in the IOTA protocol. In: Anceaume, E., Bisiére, C., Bouvard, M., Bramas, Q., Casamatta, C. (eds.) 2nd International Conference on Blockchain Economics, Security and Protocols (Tokenomics 2020), vol. 82, pp. 8:1–8:18 (2021). https://doi.org/10.4230/OASIcs.Tokenomics.2020.8. https://drops.dagstuhl.de/opus/volltexte/2021/13530. ISSN 2190–6807

  25. Peters, G.W., Panayi, E.: Understanding modern banking ledgers through blockchain technologies: future of transaction processing and smart contracts on the internet of money. In: Tasca, P., Aste, T., Pelizzon, L., Perony, N. (eds.) Banking Beyond Banks and Money. New Economic Windows, pp. 239–278. Springer, Cham (2016)

    Google Scholar 

  26. Pierrot, C., Wesolowski, B.: Malleability of the blockchain’s entropy. Cryptogr. Commun. 10, 211–233 (2017)

    MathSciNet  CrossRef  Google Scholar 

  27. Pietrzak, K.: Simple verifiable delay functions (2018). https://eprint.iacr.org/2018/627

  28. Poon, J., Dryja, T.: The bitcoin lightning network: Scalable off-chain instant payments (2016)

    Google Scholar 

  29. Serguei Popov. The tangle (2015)

    Google Scholar 

  30. Popov, S.: A probabilistic analysis of the Nxt forging algorithm. Ledger 1, 69–83 (2016)

    CrossRef  Google Scholar 

  31. Popov, S.: On a decentralized trustless pseudo-random number generation algorithm. J. Math. Cryptol. 37–43 (2017)

    Google Scholar 

  32. Popov, S.: Coins, walks and FPC. Youtube (2020)

    Google Scholar 

  33. Popov, S., Buchanan, W.J.: FPC-BI: Fast Probabilistic Consensus within Byzantine Infrastructures (2019). https://arxiv.org/abs/1905.10895

  34. Popov, S., et al.: The Coordicide (2020). https://files.iota.org/papers/20200120_Coordicide_WP.pdf

  35. Popov, S., Saa, O., Finardi, P.: Equilibria in the Tangle. ArXiv e-prints. arXiv:1712.05385. December 2017

  36. Rabin, M.O.: Transaction protection by beacons. J. Comput. Syst. Sci. 27(2), 256–267 (1983)

    MathSciNet  CrossRef  Google Scholar 

  37. Sompolinsky, Y., Lewenberg, Y., Zohar, A.: Spectre: a fast and scalable cryptocurrency protocol. Cryptology ePrint Archive, Report 2016/1159 (2016)

    Google Scholar 

  38. Stathakopoulou, C., David, T., Vukolic, M.: Mir-BFT: High-Throughput BFT for Blockchains, June 2019

    Google Scholar 

  39. Syta, E., et al.: Scalable bias-resistant distributed randomness. In: 2017 IEEE Symposium on Security and Privacy (SP), pp. 444–460 (2017)

    Google Scholar 

  40. Wesolowski, B.: Efficient verifiable delay functions (2018). https://eprint.iacr.org/2018/623

  41. Zheng, Z., Xie, S., Dai, H.-N., Wang, H.: Blockchain challenges and opportunities: a survey. Int. J. Web Grid Serv. 1, 1–25 (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bartosz Kuśmierz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Kuśmierz, B., Müller, S., Capossele, A. (2021). Committee Selection in DAG Distributed Ledgers and Applications. In: Arai, K. (eds) Intelligent Computing. Lecture Notes in Networks and Systems, vol 284. Springer, Cham. https://doi.org/10.1007/978-3-030-80126-7_59

Download citation