Abstract
Quantum Computing (QC) is a promising approach which is expected to boost the development of new services and applications. Specific addressable problems can be tackled through acceleration in computational time and advances with respect to the complexity of the problems, for which QC algorithms can support the solution search. However, QC currently remains a domain that is strongly dominated by a physics’ perspective. Indeed, in order to bring QC to industrial grade applications we need to consider multiple perspectives, especially the one of software engineering and software application/service programming. Following this line of thought, the current paper presents our computer scientist’s view on the aspect of black-box oracles, which are a key construct for the majority of currently available QC algorithms. Thereby, we observe the need for the input of API functions from the traditional world of software engineering and (web-)services to be mapped to the above mentioned black-box oracles. Hence, there is a clear requirement for automatically generating oracles for specific types of problems/algorithms based on the concrete input to the belonging APIs. In this paper, we discuss the above aspects and illustrate them on two QC algorithms, namely Deutsch-Jozsa and the Grover’s algorithm.
Keywords
- Quantum computing
- Grover’s algorithm
- Oracle
- API
This is a preview of subscription content, access via your institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsChange history
19 August 2021
In the original version of the book, in Chapter 9, a few corrections which were missed-out in pages 192–196 were incorporated
References
QOSF Learning Resources on Quantum Computing: https://qosf.org/learn_quantum/. Accessed 20 Oct 2020
Haney, B., Quantum Patents (March 16, 2020). 27 B.U. J. Sci. Tech. L. (2020). (Forthcoming). Available at SSRN: https://ssrn.com/abstract=3554925
IBM Quantum Roadmap: https://www.ibm.com/blogs/research/2020/09/ibm-quantum-roadmap/. Accessed 20 Oct 2020
Manin, Yu.I.: Computable and Noncomputable Sov. Radio (1980)
Benioff, P.: The computer as a physical system: a microscopic quantum mechanical hamiltonian model of computers as represented by turing machines. J. Stat. Phys. 22(5), 563–591 (1980). https://doi.org/10.1007/bf01011339
Feynman, R.P.: Simulating physics with computers. Int. J. Theore. Phys. 21, Nos. 6/7 (1982)
Benioff, P.: Quantum mechanical models of turing machines that dissipate no energy. Phys. Rev. Lett. 48(23), 1581–1585 (1982)
Deutsch, D., Jozsa, R.: Rapid solutions of problems by quantum computation. Proc. R. Soc. London, 439, 53–558 (1992). https://doi.org/10.1098/rspa.1992.0167
Cleve, R., Ekert, A., Macchiavello, C., Mosca, M.: Quantum algorithms revisited. Proc. R. Soc. London 454(1969), 339–354 (1998). https://doi.org/10.1098/rspa.1998.0164
Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Proceedings, 28th Annual ACM Symposium on the Theory of Computing, p. 212, May 1996
Chuang, I.L., Gershenfeld, N., Kubinec, M.: Experimental implementation of fast quantum searching. Phys. Rev. Lett. 80 (15), 3408–3411 (1998). https://doi.org/10.1103/PhysRevLett.80.3408
O’Brien, J.L., Pryde, G.J., White, A.G., Ralph, T.C., Branning, D.: Demonstration of an all-optical quantum controlled-NOT gate. Nature 426(6964), 264–267 (2003). https://doi.org/10.1038/nature02054
Gulde, S., et al.: Implementation of the Deutsch-Jozsa algorithm on an ion-trap quantum computer. Nature 421(6918), 48–50 (2003). https://doi.org/10.1038/nature01336
Clarke, J., Wilhelm, F.K.: Superconducting quantum bits. Nature. 453(7198), 1031–1042 (2008). https://doi.org/10.1038/nature07128
Last, T., et.al.: Quantum Inspire: QuTech’s platform for co-development and collaboration in quantum computing. In: Proceedings SPIE 11324, Novel Patterning Technologies for Semiconductors, MEMS/NEMS and MOEMS 2020, 113240J (2020). https://doi.org/10.1117/12.2551853
IBM Q-Experience: https://www.ibm.com/quantum-computing/. 15 July 2020
Rigetti: https://rigetti.com/. 15 July 2020
D-Wave: https://www.dwavesys.com/services. Accessed 15 July 2020
Bristol QCloud, Available: http://www.bristol.ac.uk/physics/research/quantum/engagement/qcloud/. Accessed 15 Sept 2020
Quantum Playground: http://www.quantumplayground.net/. Accessed 15 Sept 2020
Amazon Braket: https://aws.amazon.com/braket/. Accessed 15 Sept 2020
List of open source QC Software: https://github.com/qosf/awesome-quantum-software. Accessed 15 Sept 2020
Jaques, S., Naehrig, M., Roetteler, M., Virdia, F.: Implementing grover oracles for quantum key search on AES and LowMC. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020. LNCS, vol. 12106, pp. 280–310. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45724-2_10
Gilliam, A., Woerner, S., Gonciulea, C.: Grover Adaptive Search for Constrained Polynomial Binary Optimization, arXiv e-prints (2019)
Baritompa, W., Bulger, D., Wood, G.: Grover’s quantum algorithm applied to global optimization. SIAM J. Optim. 15, 1170–1184 (2005). https://doi.org/10.1137/040605072
Borujeni, S.E., Harikrishnakumar, R., Nannapaneni, S.: Quantum Grover search-based optimization for innovative material discovery. In: 2019 IEEE International Conference on Big Data (Big Data), Los Angeles, CA, USA, pp. 4486–4489 (2019). https://doi.org/10.1109/BigData47090.2019.9006454
Gilliam, A., Pistoia, M., Gonciulea, C.: Optimizing Quantum Search Using a Generalized Version of Grover’s Algorithm, arXiv e-prints (2020)
Huang, H., Wu, D., Fan, D., Zhu, X.: Superconducting Quantum Computing: A Review (2020). arXiv:2006.10433
Venturelli, D., Kondratyev, A.: Reverse Quantum Annealing Approach to Portfolio Optimization Problems, Papers, arXiv.org (2018). https://EconPapers.repec.org/RePEc:arx:papers:1810.08584
Kieu, T.D.: The travelling salesman problem and adiabatic quantum computation: an algorithm. Quantum Inf. Process. 18(3), 1–19 (2019). https://doi.org/10.1007/s11128-019-2206-9
Elfving, V.E.: How will quantum computers provide an industrially relevant computational advantage in quantum chemistry? arXiv e-prints (2020)
Boneh, D., Dagdelen, Ö., Fischlin, M., Lehmann, A., Schaffner, C., Zhandry, M.: Random oracles in a quantum world. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 41–69. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25385-0_3
Deutsch, D.: Quantum theory, the church–turing principle and the universal quantum computer. In: Proc. R. Soc. London. A. Math. Phys. Sci. 400(1818), 97–117 (1985)
Richard, J.: Characterizing classes of functions computable by quantum parallelism. Proc. R. Soc. London. Ser. Math. Phys. Sci. 435(1895), 563–574 (1991)
Kiss, A., Varga, K.: Comparing two quantum oracles using the Deutsch-Jozsa algorithm. Ann. Univ. Sci. Budapest., Sect. Comp. 50 199–217 (2020)
Salman, T., Baram, Y.: Quantum set intersection and its applicationto associative memory. J. Mach. Learn. Res. 13, 3177–3206 (2012)
Nagata, K., Nakamura, T.: The Deutsch-Jozsa algorithm can be used for quantum key distribution. Open Access Libr. J. 2, e1798 (2015)
Alexandru, C.-M., Bridgett-Tomkinson, E., Linden, N., MacManus, J., Montanaro, A., Morris, H. Quantum speedups of some general-purpose numerical optimisation algorithms. Quant. Sci. Technol. 5(4) (2020). https://doi.org/10.1088/2058-9565/abb003
Mosca, M.: Quantum Algorithms, arXiv:0808.0369, submitted: Mon, 4 August 2008. https://arxiv.org/abs/0808.0369
de Jonge, G., Sprij, A.: 10. In: 36 zieke kinderen, pp. 39–42. Bohn Stafleu van Loghum, Houten (2012). https://doi.org/10.1007/978-90-313-8424-2_10
Nannicini, G.: Quantum Computing, Lecture 5 (2019). https://researcher.watson.ibm.com/researcher/files/us-nannicini/8100_lecture_5.pdf
Figgatt, C., Maslov, D., Landsman, K.A., et al.: Complete 3-Qubit grover search on a programmable quantum computer. Nat Commun 8, 1918 (2017). https://doi.org/10.1038/s41467-017-01904-7
Strömberg, P., Blomkvist Karlsson, V.: 4-qubit Grover’s algorithm implemented for the ibmqx5 architecture (Dissertation) (2018). http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-229797
Mandviwalla, A., Ohshiro, K., Ji, B.: Implementing Grover’s algorithm on the IBM quantum computers. In: 2018 IEEE International Conference on Big Data (Big Data), Seattle, WA, USA, pp. 2531–2537 (2018). https://doi.org/10.1109/BigData.2018.8622457
Wang, P., Liu, G., Liu, L.: A generic variable inputs quantum algorithm for 3-sat problem. In: 2020 IEEE International Conference on Advances in Electrical Engineering and Computer Applications (AEECA), Dalian, China, pp. 308–312 (2020). https://doi.org/10.1109/AEECA49918.2020.9213471
Gilliam, A., Pistoia, M., Gonciulea, C.: Canonical Construction of Quantum Oracles, arXiv:2006.10656 (2020)
Dhawan, S., Perkowski, M., comparison of influence of two data-encoding methods for grover algorithm on quantum costs. In: 41st IEEE International Symposium on Multiple-Valued Logic. Tuusula 2011, 176–181 (2011). https://doi.org/10.1109/ISMVL.2011.29
Tsai, E., Perkowski, M.: A Quantum Algorithm for Automata Encoding. https://doi.org/10.2298/FUEE2002169T
Gheorghe-Pop, I.D., Tcholtchev, N., Ritter, T., Hauswirth, M.: Quantum devops: towards reliable and applicable NISQ quantum computing (forthcoming). In:12 IEEE GLOBECOM 2020
Bertels, K., Almudever, C.G., Hogaboam, J.W., Ashraf, I., Guerreschi, G. G., Khammassi, N.: (2018–05–24). cQASM v1.0: Towards a Common Quantum Assembly Language. arXiv:1805.09607v1 (2010)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Gheorghe-Pop, ID., Tcholtchev, N., Ritter, T., Hauswirth, M. (2022). Computer Scientist’s and Programmer’s View on Quantum Algorithms: Mapping Functions’ APIs and Inputs to Oracles. In: Arai, K. (eds) Intelligent Computing. Lecture Notes in Networks and Systems, vol 283. Springer, Cham. https://doi.org/10.1007/978-3-030-80119-9_9
Download citation
DOI: https://doi.org/10.1007/978-3-030-80119-9_9
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-80118-2
Online ISBN: 978-3-030-80119-9
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)