Skip to main content

Computer Scientist’s and Programmer’s View on Quantum Algorithms: Mapping Functions’ APIs and Inputs to Oracles

  • 1461 Accesses

Part of the Lecture Notes in Networks and Systems book series (LNNS,volume 283)

Abstract

Quantum Computing (QC) is a promising approach which is expected to boost the development of new services and applications. Specific addressable problems can be tackled through acceleration in computational time and advances with respect to the complexity of the problems, for which QC algorithms can support the solution search. However, QC currently remains a domain that is strongly dominated by a physics’ perspective. Indeed, in order to bring QC to industrial grade applications we need to consider multiple perspectives, especially the one of software engineering and software application/service programming. Following this line of thought, the current paper presents our computer scientist’s view on the aspect of black-box oracles, which are a key construct for the majority of currently available QC algorithms. Thereby, we observe the need for the input of API functions from the traditional world of software engineering and (web-)services to be mapped to the above mentioned black-box oracles. Hence, there is a clear requirement for automatically generating oracles for specific types of problems/algorithms based on the concrete input to the belonging APIs. In this paper, we discuss the above aspects and illustrate them on two QC algorithms, namely Deutsch-Jozsa and the Grover’s algorithm.

Keywords

  • Quantum computing
  • Grover’s algorithm
  • Oracle
  • API

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-80119-9_9
  • Chapter length: 16 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   219.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-80119-9
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   279.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Change history

  • 19 August 2021

    In the original version of the book, in Chapter 9, a few corrections which were missed-out in pages 192–196 were incorporated

References

  1. QOSF Learning Resources on Quantum Computing: https://qosf.org/learn_quantum/. Accessed 20 Oct 2020

  2. Haney, B., Quantum Patents (March 16, 2020). 27 B.U. J. Sci. Tech. L. (2020). (Forthcoming). Available at SSRN: https://ssrn.com/abstract=3554925

  3. IBM Quantum Roadmap: https://www.ibm.com/blogs/research/2020/09/ibm-quantum-roadmap/. Accessed 20 Oct 2020

  4. Manin, Yu.I.: Computable and Noncomputable Sov. Radio (1980)

    Google Scholar 

  5. Benioff, P.: The computer as a physical system: a microscopic quantum mechanical hamiltonian model of computers as represented by turing machines. J. Stat. Phys. 22(5), 563–591 (1980). https://doi.org/10.1007/bf01011339

    MathSciNet  CrossRef  MATH  Google Scholar 

  6. Feynman, R.P.: Simulating physics with computers. Int. J. Theore. Phys. 21, Nos. 6/7 (1982)

    Google Scholar 

  7. Benioff, P.: Quantum mechanical models of turing machines that dissipate no energy. Phys. Rev. Lett. 48(23), 1581–1585 (1982)

    MathSciNet  CrossRef  Google Scholar 

  8. Deutsch, D., Jozsa, R.: Rapid solutions of problems by quantum computation. Proc. R. Soc. London, 439, 53–558 (1992). https://doi.org/10.1098/rspa.1992.0167

  9. Cleve, R., Ekert, A., Macchiavello, C., Mosca, M.: Quantum algorithms revisited. Proc. R. Soc. London 454(1969), 339–354 (1998). https://doi.org/10.1098/rspa.1998.0164

    MathSciNet  CrossRef  MATH  Google Scholar 

  10. Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Proceedings, 28th Annual ACM Symposium on the Theory of Computing, p. 212, May 1996

    Google Scholar 

  11. Chuang, I.L., Gershenfeld, N., Kubinec, M.: Experimental implementation of fast quantum searching. Phys. Rev. Lett. 80 (15), 3408–3411 (1998). https://doi.org/10.1103/PhysRevLett.80.3408

  12. O’Brien, J.L., Pryde, G.J., White, A.G., Ralph, T.C., Branning, D.: Demonstration of an all-optical quantum controlled-NOT gate. Nature 426(6964), 264–267 (2003). https://doi.org/10.1038/nature02054

    CrossRef  Google Scholar 

  13. Gulde, S., et al.: Implementation of the Deutsch-Jozsa algorithm on an ion-trap quantum computer. Nature 421(6918), 48–50 (2003). https://doi.org/10.1038/nature01336

    CrossRef  Google Scholar 

  14. Clarke, J., Wilhelm, F.K.: Superconducting quantum bits. Nature. 453(7198), 1031–1042 (2008). https://doi.org/10.1038/nature07128

  15. Last, T., et.al.: Quantum Inspire: QuTech’s platform for co-development and collaboration in quantum computing. In: Proceedings SPIE 11324, Novel Patterning Technologies for Semiconductors, MEMS/NEMS and MOEMS 2020, 113240J (2020). https://doi.org/10.1117/12.2551853

  16. IBM Q-Experience: https://www.ibm.com/quantum-computing/. 15 July 2020

  17. Rigetti: https://rigetti.com/. 15 July 2020

  18. D-Wave: https://www.dwavesys.com/services. Accessed 15 July 2020

  19. Bristol QCloud, Available: http://www.bristol.ac.uk/physics/research/quantum/engagement/qcloud/. Accessed 15 Sept 2020

  20. Quantum Playground: http://www.quantumplayground.net/. Accessed 15 Sept 2020

  21. Amazon Braket: https://aws.amazon.com/braket/. Accessed 15 Sept 2020

  22. List of open source QC Software: https://github.com/qosf/awesome-quantum-software. Accessed 15 Sept 2020

  23. Jaques, S., Naehrig, M., Roetteler, M., Virdia, F.: Implementing grover oracles for quantum key search on AES and LowMC. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020. LNCS, vol. 12106, pp. 280–310. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45724-2_10

    CrossRef  Google Scholar 

  24. Gilliam, A., Woerner, S., Gonciulea, C.: Grover Adaptive Search for Constrained Polynomial Binary Optimization, arXiv e-prints (2019)

    Google Scholar 

  25. Baritompa, W., Bulger, D., Wood, G.: Grover’s quantum algorithm applied to global optimization. SIAM J. Optim. 15, 1170–1184 (2005). https://doi.org/10.1137/040605072

    MathSciNet  CrossRef  MATH  Google Scholar 

  26. Borujeni, S.E., Harikrishnakumar, R., Nannapaneni, S.: Quantum Grover search-based optimization for innovative material discovery. In: 2019 IEEE International Conference on Big Data (Big Data), Los Angeles, CA, USA, pp. 4486–4489 (2019). https://doi.org/10.1109/BigData47090.2019.9006454

  27. Gilliam, A., Pistoia, M., Gonciulea, C.: Optimizing Quantum Search Using a Generalized Version of Grover’s Algorithm, arXiv e-prints (2020)

    Google Scholar 

  28. Huang, H., Wu, D., Fan, D., Zhu, X.: Superconducting Quantum Computing: A Review (2020). arXiv:2006.10433

  29. Venturelli, D., Kondratyev, A.: Reverse Quantum Annealing Approach to Portfolio Optimization Problems, Papers, arXiv.org (2018). https://EconPapers.repec.org/RePEc:arx:papers:1810.08584

  30. Kieu, T.D.: The travelling salesman problem and adiabatic quantum computation: an algorithm. Quantum Inf. Process. 18(3), 1–19 (2019). https://doi.org/10.1007/s11128-019-2206-9

    MathSciNet  CrossRef  MATH  Google Scholar 

  31. Elfving, V.E.: How will quantum computers provide an industrially relevant computational advantage in quantum chemistry? arXiv e-prints (2020)

    Google Scholar 

  32. Boneh, D., Dagdelen, Ö., Fischlin, M., Lehmann, A., Schaffner, C., Zhandry, M.: Random oracles in a quantum world. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 41–69. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25385-0_3

    CrossRef  MATH  Google Scholar 

  33. Deutsch, D.: Quantum theory, the church–turing principle and the universal quantum computer. In: Proc. R. Soc. London. A. Math. Phys. Sci. 400(1818), 97–117 (1985)

    Google Scholar 

  34. Richard, J.: Characterizing classes of functions computable by quantum parallelism. Proc. R. Soc. London. Ser. Math. Phys. Sci. 435(1895), 563–574 (1991)

    Google Scholar 

  35. Kiss, A., Varga, K.: Comparing two quantum oracles using the Deutsch-Jozsa algorithm. Ann. Univ. Sci. Budapest., Sect. Comp. 50 199–217 (2020)

    Google Scholar 

  36. Salman, T., Baram, Y.: Quantum set intersection and its applicationto associative memory. J. Mach. Learn. Res. 13, 3177–3206 (2012)

    MathSciNet  MATH  Google Scholar 

  37. Nagata, K., Nakamura, T.: The Deutsch-Jozsa algorithm can be used for quantum key distribution. Open Access Libr. J. 2, e1798 (2015)

    Google Scholar 

  38. Alexandru, C.-M., Bridgett-Tomkinson, E., Linden, N., MacManus, J., Montanaro, A., Morris, H. Quantum speedups of some general-purpose numerical optimisation algorithms. Quant. Sci. Technol. 5(4) (2020). https://doi.org/10.1088/2058-9565/abb003

  39. Mosca, M.: Quantum Algorithms, arXiv:0808.0369, submitted: Mon, 4 August 2008. https://arxiv.org/abs/0808.0369

  40. de Jonge, G., Sprij, A.: 10. In: 36 zieke kinderen, pp. 39–42. Bohn Stafleu van Loghum, Houten (2012). https://doi.org/10.1007/978-90-313-8424-2_10

    CrossRef  Google Scholar 

  41. Nannicini, G.: Quantum Computing, Lecture 5 (2019). https://researcher.watson.ibm.com/researcher/files/us-nannicini/8100_lecture_5.pdf

  42. Figgatt, C., Maslov, D., Landsman, K.A., et al.: Complete 3-Qubit grover search on a programmable quantum computer. Nat Commun 8, 1918 (2017). https://doi.org/10.1038/s41467-017-01904-7

    CrossRef  Google Scholar 

  43. Strömberg, P., Blomkvist Karlsson, V.: 4-qubit Grover’s algorithm implemented for the ibmqx5 architecture (Dissertation) (2018). http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-229797

  44. Mandviwalla, A., Ohshiro, K., Ji, B.: Implementing Grover’s algorithm on the IBM quantum computers. In: 2018 IEEE International Conference on Big Data (Big Data), Seattle, WA, USA, pp. 2531–2537 (2018). https://doi.org/10.1109/BigData.2018.8622457

  45. Wang, P., Liu, G., Liu, L.: A generic variable inputs quantum algorithm for 3-sat problem. In: 2020 IEEE International Conference on Advances in Electrical Engineering and Computer Applications (AEECA), Dalian, China, pp. 308–312 (2020). https://doi.org/10.1109/AEECA49918.2020.9213471

  46. Gilliam, A., Pistoia, M., Gonciulea, C.: Canonical Construction of Quantum Oracles, arXiv:2006.10656 (2020)

  47. Dhawan, S., Perkowski, M., comparison of influence of two data-encoding methods for grover algorithm on quantum costs. In: 41st IEEE International Symposium on Multiple-Valued Logic. Tuusula 2011, 176–181 (2011). https://doi.org/10.1109/ISMVL.2011.29

    MathSciNet  CrossRef  Google Scholar 

  48. Tsai, E., Perkowski, M.: A Quantum Algorithm for Automata Encoding. https://doi.org/10.2298/FUEE2002169T

  49. Gheorghe-Pop, I.D., Tcholtchev, N., Ritter, T., Hauswirth, M.: Quantum devops: towards reliable and applicable NISQ quantum computing (forthcoming). In:12 IEEE GLOBECOM 2020

    Google Scholar 

  50. Bertels, K., Almudever, C.G., Hogaboam, J.W., Ashraf, I., Guerreschi, G. G., Khammassi, N.: (2018–05–24). cQASM v1.0: Towards a Common Quantum Assembly Language. arXiv:1805.09607v1 (2010)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ilie-Daniel Gheorghe-Pop .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Gheorghe-Pop, ID., Tcholtchev, N., Ritter, T., Hauswirth, M. (2022). Computer Scientist’s and Programmer’s View on Quantum Algorithms: Mapping Functions’ APIs and Inputs to Oracles. In: Arai, K. (eds) Intelligent Computing. Lecture Notes in Networks and Systems, vol 283. Springer, Cham. https://doi.org/10.1007/978-3-030-80119-9_9

Download citation