Skip to main content

Multi-scale Defect Detection Network for Tire Visual Inspection

  • Conference paper
  • First Online:
Intelligent Computing

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 283))

Abstract

Automatic defect detection in industrial inspection remains a challenging task due to the diversity of products and the complexity of textures. In this work, we focus on the detection task in tire industry and develop a multi-scale defect detection network (MDDN), which captures both semantic and texture features using two parallel deep convolutional network. High-level semantic features containing defect shapes and locations are captured via a semantic-aware network, simplified by an off-the-shelf fully convolutional network. A simple yet effective texture-aware network is simultaneously developed to complement the details filtered out by the sub-sampling. Pixel-wise detection results are then obtained by integrating features with semantic and texture information. Moreover, we carefully designed a multi-scale preprocessing strategy to make the model describe defects more accurately with the help of the texture similarity in the tire image. Extensive experiments demonstrate that MDDN can achieve significant performance improvement in detecting defects with different sizes over some existing methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Available at https://github.com/shelhamer/fcn.berkeleyvision.org.

References

  1. Kumar, A.: Computer-vision-based fabric defect detection: a survey. IEEE Trans. Ind. Electron. 55, 348–363 (2008)

    Article  Google Scholar 

  2. Li, Y., Zhao, W., Pan, J.: Deformable patterned fabric defect detection with fisher criterion-based deep learning. IEEE Trans. Autom. Sci. Eng. 14, 1256–1264 (2016)

    Article  Google Scholar 

  3. Guo, Q., Zhang, C., Liu, H., Zhang, X.: Defect detection in tire X-Ray images using weighted texture dissimilarity. J. Sens. 2016, 1–12 (2016)

    Google Scholar 

  4. Zhang, Y., Li, T., Li, Q.: Defect detection for tire laser shearography image using curvelet transform based edge detector. Opt. Laser Technol. 47, 64–71 (2013)

    Article  Google Scholar 

  5. Wang, R., Guo, Q., Lu, S., Zhang, C.: Tire defect detection using fully convolutional network. IEEE Access 7, 43502–43510 (2019)

    Article  Google Scholar 

  6. Zhang, C., Li, X., Guo, Q., Yu, X., Zhang, C.: Texture-invariant detection method for tire crack. J. Comput.-Aided Des. Comput. Graph. 25, 809–816 (2013). (in Chinese)

    Google Scholar 

  7. Xiang, Y., Zhang, C., Guo, Q.: A dictionary-based method for tire defect detection. In: ICIA, pp. 519–523 (2014)

    Google Scholar 

  8. Zhang, Y., Li, T., Li, Q.: Detection of foreign bodies and bubble defects in tire radiography images based on total variation and edge detection. China Phys. Lett. 30 (2013). Article: 084205

    Google Scholar 

  9. Cui, X., Liu, Y., Zhang, Y., Wang, C.: Tire defects classification with multi-contrast convolutional neural networks. Int. J. Pattern Recognit. Artif. Intell. 32 (2018). Article: 1850011

    Google Scholar 

  10. Lowe, D.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vision. 60, 91–110 (2004)

    Article  Google Scholar 

  11. Lin, T., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: CVPR, pp. 2117–2125 (2017)

    Google Scholar 

  12. Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C., Berg, A.: SSD: Single shot multibox detector. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) Computer Vision – ECCV 2016. ECCV 2016. LNCS, vol. 9905, pp. 21–37. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46448-0_2

  13. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: CVPR, pp. 3431–3440 (2015)

    Google Scholar 

  14. Newell, A., Yang, K., Deng, J.: Stacked hourglass networks for human pose estimation. In: Leibe B., Matas J., Sebe N., Welling M. (eds.) Computer Vision – ECCV 2016. ECCV 2016. LNCS, vol. 9912, pp. 483–499. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46484-8_29

  15. Ghiasi, G., Fowlkes, C.: Laplacian pyramid reconstruction and refinement for semantic segmentation. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) Computer Vision – ECCV 2016. ECCV 2016. Lecture Notes in Computer Science, vol. 9907, pp. 519–534. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46487-9_32

  16. Zhou, P., Ni, B., Geng, C., Hu, J., Xu, Y.: Scale-transferrable object detection. In: CVPR, pp. 528–537 (2018)

    Google Scholar 

  17. Boominathan, L., Kruthiventi, S., Babu, R.: Crowdnet: a deep convolutional network for dense crowd counting. In: ACM MM, pp. 640–644 (2016)

    Google Scholar 

  18. Dong, C., Loy, C., Tang, X.: Accelerating the super-resolution convolutional neural network. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds) Computer Vision – ECCV 2016. ECCV 2016. LNCS, vol. 9906, pp. 391–407. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46475-6_25

  19. Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accurate object detection and semantic segmentation. In: CVPR, pp. 580–587 (2014)

    Google Scholar 

  20. Glorot, X., Bengio, Y.: Understanding the difficulty of training deep feedforward neural networks. In: AISTATS, pp. 249–256 (2010)

    Google Scholar 

  21. Badrinarayanan, V., Kendall, A., Cipolla, R.: Segnet: a deep convolutional encoder-decoder architecture for image segmentation. IEEE Trans. Pattern Anal. 39, 2481–2495 (2017)

    Article  Google Scholar 

  22. Yu, F., Koltun, V., Funkhouser, T.: Dilated residual networks. In: CVPR, pp. 472–480 (2017)

    Google Scholar 

  23. Wang, P., et al.: Understanding convolution for semantic segmentation. In: WACV, pp. 1451–1460 (2018)

    Google Scholar 

  24. Zheng, Z., Zhang, S., Yu, B., Li, Q., Zhang, Y.: Defect inspection in tire radiographic image using concise semantic segmentation. IEEE Access 8, 112674–112687 (2020)

    Article  Google Scholar 

Download references

Acknowledgment

This work was supported by National Natural Science Foundation of China (61873145, U1609218), Natural Science Foundation of Shandong Province (ZR 2017JL029) and Science and Technology Innovation Program for Distributed Young Talents of Shandong Province Higher Education Institutions (2019KJN045).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiang Guo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wei, M., Wang, R., Guo, Q. (2022). Multi-scale Defect Detection Network for Tire Visual Inspection. In: Arai, K. (eds) Intelligent Computing. Lecture Notes in Networks and Systems, vol 283. Springer, Cham. https://doi.org/10.1007/978-3-030-80119-9_49

Download citation

Publish with us

Policies and ethics