Skip to main content

Generalities of the Coagulation-Flocculation Process: A Perspective on Biocoagulants

  • Chapter
  • First Online:
Innovations in Biotechnology for a Sustainable Future

Abstract

Water treatment is a necessity for social and industrial development. Coagulation-flocculation is a fundamental process for the reduction of colloidal particles present in the water to be treated. The use of synthetic coagulants in effluent or wastewater treatment leads to a high production of non-biodegradable sludge and water containing trace elements that are harmful to ecosystems. Biocoagulants are a very efficient alternative that produces a low volume of sludge and has no harmful effects on flora or fauna. This chapter presents the generalities of the coagulation-flocculation process related to water treatment and identifies the advances in the field of biocoagulants. The chapter develops theoretical aspects of colloidal systems, their stability, and the interactions between particles. The coagulation-flocculation process is also described, as well as the influencing factors (temperature, pH, water composition, among others). Finally, the kinetic aspects of the processes of colloidal destabilization, floc formation, and sedimentation are described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Arboleda, J. (1972). Teoría, diseño y control de los procesos de clarificación del agua. CEPIS (Centro Panamericano de Ingeniería Sanitaria y Ciencias del Ambiente).

    Google Scholar 

  • Badrus, Z. (2018). Potential of natural flocculant in coagulation-flocculation wastewater treatment process. E3S Web Conference, 73, 05006. https://doi.org/10.1051/e3sconf/20187305006

    Article  CAS  Google Scholar 

  • Bakiri, Z., & Nacef, S. (2020). Development of an improved model for settling velocity and evaluation of the settleability characteristics. Water Environment Research, 92, 1089–1098. https://doi.org/10.1002/wer.1306

    Article  CAS  PubMed  Google Scholar 

  • Baptista, A. T. A., Silva, M. O., Gomes, R. G., Bergamasco, R., Vieira, M. F., & Vieira, A. M. S. (2017). Protein fractionation of seeds of Moringa oleifera lam and its application in superficial water treatment. Sep Purif Technol, 180, 114–124. https://doi.org/10.1016/j.seppur.2017.02.040

  • Baquerizo-Crespo, R. J., Macías-Alcívar, J. A., Zhingre-Farfán, J. M., Gómez-Salcedo, Y., Córdova, A., & Zambrano-Arcentales, M. A. (2020). Evaluation of the effect of Moringa oleifera and Caesalpinia spinosa mixtures on surface water turbidity. Afinidad 77.

    Google Scholar 

  • Baquerizo-Crespo, R. J., Nuñez, Y., Albite, J., Macías-Alcívar, J. A., Cedeño-Zambrano, N., Dueñas-Rivadeneira, A. A., et al. (2021). Biocoagulants as an Alternative for Water Treatment. In: Maddela NR, García Cruzatty LC, Chakraborty S (eds) Advances in the Domain of Environmental Biotechnology: Microbiological Developments in Industries, Wastewater Treatment and Agriculture. Springer, Singapore, pp 313–334.

    Google Scholar 

  • Bouyer, D., Coufort, C., Liné, A., & Do-Quang, Z. (2005). Experimental analysis of floc size distributions in a 1-L jar under different hydrodynamics and physicochemical conditions. Journal of Colloid and Interface Science, 292, 413–428. https://doi.org/10.1016/j.jcis.2005.06.011

    Article  CAS  PubMed  Google Scholar 

  • Bratby, J. (2016). Coagulation and flocculation in water and wastewater treatment. IWA Publishing.

    Book  Google Scholar 

  • Bridgeman, J., Jefferson, B., & Parsons, S. (2008). Assessing floc strength using CFD to improve organics removal. Chemical Engineering Research and Design, 86, 941–950. https://doi.org/10.1016/j.cherd.2008.02.007

    Article  CAS  Google Scholar 

  • Bridgeman, J., Jefferson, B., & Parsons, S. A. (2010). The development and application of CFD models for water treatment flocculators. Advances in Engineering Software, 41, 99–109. https://doi.org/10.1016/j.advengsoft.2008.12.007

    Article  Google Scholar 

  • Bu, F., Gao, B., Shen, X., Wang, W., & Yue, Q. (2019). The combination of coagulation and ozonation as a pre-treatment of ultrafiltration in water treatment. Chemosphere, 231, 349–356. https://doi.org/10.1016/j.chemosphere.2019.05.154

  • Carvalho, M. S., Alves, B. R. R., Silva, M. F., Bergamasco, R., Coral, L. A., & Bassetti, F. J. (2016). CaCl2 applied to the extraction of Moringa oleifera seeds and the use for Microcystis aeruginosa removal. Chem Eng J, 304, 469–475. https://doi.org/10.1016/j.cej.2016.06.101

  • Chatsungnoen, T., & Chisti, Y. (2016). Continuous flocculation-sedimentation for harvesting Nannochloropsis salina biomass. Journal of Biotechnology, 222, 94–103. https://doi.org/10.1016/j.jbiotec.2016.02.020

  • Cho, M.-H., Lee, C.-H., & Lee, S. (2006). Effect of flocculation conditions on membrane permeability in coagulation–microfiltration. Desalination, 191, 386–396. https://doi.org/10.1016/j.desal.2005.08.017

    Article  CAS  Google Scholar 

  • Cho, S. H., Colin, F., Sardin, M., & Prost, C. (1993). Settling velocity model of activated sludge. Water Research, 27, 1237–1242. https://doi.org/10.1016/0043-1354(93)90016-B

    Article  CAS  Google Scholar 

  • Choudhary, M., Ray, M. B., & Neogi, S. (2019). Evaluation of the potential application of cactus (Opuntia ficus-indica) as a bio-coagulant for pre-treatment of oil sands process-affected water. Separation and Purification Technology, 209, 714–724. https://doi.org/10.1016/j.seppur.2018.09.033

  • Daverey, A., Tiwari, N., & Dutta, K. (2019). Utilization of extracts of Musa paradisiaca (banana) peels and Dolichos lablab (Indian bean) seeds as low-cost natural coagulants for turbidity removal from water. Environmental Science and Pollution Research, 26, 34177–34183. https://doi.org/10.1007/s11356-018-3850-9

  • Dolejs, P. (1992). The effects of temperature, pH and rapid mixing gradient on the formation of particles in treatment of humic water. In R. Klute & H. Hahn (Eds.), Chemical water and wastewater treatment II (pp. 65–77). Springer.

    Chapter  Google Scholar 

  • Duan, J., & Gregory, J. (2003). Coagulation by hydrolysing metal salts. Advances in Colloid and Interface Science, 100–102, 475–502. https://doi.org/10.1016/S0001-8686(02)00067-2

    Article  CAS  Google Scholar 

  • Elmaleh, S., & Jabbouri, A. (1991). Flocculation energy requirement. Water Research, 25, 939–943. https://doi.org/10.1016/0043-1354(91)90141-C

    Article  CAS  Google Scholar 

  • Ezemagu, I. G., Ejimofor, M. I., & Menkiti, M. C. (2020). Turbidimetric study for the decontamination of paint effluent (PE) using mucuna seed coagulant (MSC): Statistical design and coag-flocculation modelling. Environmental Advances, 2, 100023. https://doi.org/10.1016/j.envadv.2020.100023

    Article  Google Scholar 

  • Fard, M. B., Hamidi, D., Alavi, J., Jamshidian, R., Pendashteh, A., & Mirbagheri, S. A., (2021a). Saline oily wastewater treatment using Lallemantia mucilage as a natural coagulant: Kinetic study, process optimization, and modeling. Ind Crops Prod, 163, 113326. https://doi.org/10.1016/j.indcrop.2021.113326

  • Fard, M. B., Hamidi, D., Yetilmezsoy, K., Alavi, J., & Hosseinpour, F., (2021b). Utilization of Alyssum mucilage as a natural coagulant in oily-saline wastewater treatment. J Water Process Eng, 40, 101763. https://doi.org/10.1016/j.jwpe.2020.101763

  • Filbet, F., & Laurençot, P. (2004). Numerical simulation of the smoluchowski coagulation equation. SIAM Journal on Scientific Computing, 25, 2004–2028. https://doi.org/10.1137/S1064827503429132

    Article  Google Scholar 

  • Fitzpatrick, C. S. B., Fradin, E., & Gregory, J. (2004). Temperature effects on flocculation, using different coagulants. Water Science and Technology, 50, 171–175. https://doi.org/10.2166/wst.2004.0710

    Article  CAS  PubMed  Google Scholar 

  • Frantz, T. S., Farias, B. S. de, Leite, V. R. M., Kessler, F., Cadaval Jr, T. R. S., & Pinto, L. A. de A. (2020). Preparation of new biocoagulants by shrimp waste and its application in coagulation-flocculation processes. J Clean Prod 269:122397. https://doi.org/10.1016/j.jclepro.2020.122397

  • Gandiwa, B. I., Moyo, L. B., Ncube, S., Mamvura, T. A., Mguni, L. L., & Hlabangana, N. (2020). Optimisation of using a blend of plant based natural and synthetic coagulants for water treatment: (Moringa Oleifera-Cactus Opuntia-alum blend). South Afr J Chem Eng 34:158–164. https://doi.org/10.1016/j.sajce.2020.07.005

  • Gregory, J. (2013). Flocculation fundamentals. In T. Tadros (Ed.), Encyclopedia of colloid and interface science (pp. 459–491). Springer.

    Chapter  Google Scholar 

  • Hargreaves, A. J., Vale, P., Whelan, J., Alibardi, L., Constantino, C., Dotro, G., Cartmell, E. et al. (2018). Impacts of coagulation-flocculation treatment on the size distribution and bioavailability of trace metals (Cu, Pb, Ni, Zn) in municipal wastewater. Water Res 128:120–128. https://doi.org/10.1016/j.watres.2017.10.050

  • Hriberšek, M., Žajdela, B., Hribernik, A., & Zadravec, M. (2011). Experimental and numerical investigations of sedimentation of porous wastewater sludge flocs. Water Research, 45, 1729–1735. https://doi.org/10.1016/j.watres.2010.11.019

    Article  CAS  PubMed  Google Scholar 

  • Huang, X., Gao, B., Yue, Q., Wang, Y., Li, Q., Zhao, S., & Sun, S. (2013). Effect of dosing sequence and raw water pH on coagulation performance and flocs properties using dual-coagulation of polyaluminum chloride and compound bioflocculant in low temperature surface water treatment. Chem Eng J, 229, 477–483. https://doi.org/10.1016/j.cej.2013.06.029

  • Kakoi, B., Kaluli, J. W., Ndiba, P., & Thiong’o, G. (2017). Optimization of Maerua Decumbent bio-coagulant in paint industry wastewater treatment with response surface methodology. Journal of Cleaner Production, 164, 1124–1134. https://doi.org/10.1016/j.jclepro.2017.06.240

    Article  CAS  Google Scholar 

  • Kalaitzidou, K., Zouboulis, A., & Mitrakas, M. (2020). Cost evaluation for Se (IV) removal, by applying common drinking water treatment processes: Coagulation/precipitation or adsorption. Journal of Environmental Chemical Engineering, 8, 104209. https://doi.org/10.1016/j.jece.2020.104209

    Article  CAS  Google Scholar 

  • Kang, K., & Redner, S. (1984). Fluctuation effects in Smoluchowski reaction kinetics. Physical Review A, 30, 2833–2836. https://doi.org/10.1103/PhysRevA.30.2833

    Article  CAS  Google Scholar 

  • Kang, L.-S., & Cleasby, J. L. (1995). Temperature effects on flocculation kinetics using Fe (III) coagulant. Journal of Environmental Engineering, 121, 893–901. https://doi.org/10.1061/(ASCE)0733-9372(1995)121:12(893)

    Article  CAS  Google Scholar 

  • Kang, X., Xia, Z., Wang, J., & Yang, W. (2019). A novel approach to model the batch sedimentation and estimate the settling velocity, solid volume fraction, and floc size of kaolinite in concentrated solutions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 579, 123647. https://doi.org/10.1016/j.colsurfa.2019.123647

    Article  CAS  Google Scholar 

  • Kitchener, B. G., Wainwright, J., & Parsons, A. J. (2017). A review of the principles of turbidity measurement. Progress in Physical Geography: Earth and Environment, 41, 620–642. https://doi.org/10.1177/0309133317726540

  • Klimpel, R. C., & Hogg, R. (1986). Effects of flocculation conditions on agglomerate structure. Journal of Colloid and Interface Science, 113, 121–131. https://doi.org/10.1016/0021-9797(86)90212-2

    Article  CAS  Google Scholar 

  • Kramer, O. J. I., de Moel, P. J., Baars, E. T., van Vugt, W. H., Padding, J. T., & van der Hoek, J. P. (2019). Improvement of the Richardson-Zaki liquid-solid fluidisation model on the basis of hydraulics. Powder Technol, 343, 465–478. https://doi.org/10.1016/j.powtec.2018.11.018

  • Kynch, G. J. (1952). A theory of sedimentation. Transactions of the Faraday Society, 48, 166–176. https://doi.org/10.1039/TF9524800166

    Article  CAS  Google Scholar 

  • Liang, Z., Wang, Y., Zhou, Y., Liu, H., & Wu, Z. (2009). Variables affecting melanoidins removal from molasses wastewater by coagulation/flocculation. Sep Purif Technol, 68, 382–389. https://doi.org/10.1016/j.seppur.2009.06.011

  • López, E. A., Oropeza-Guzman, M. T., Jurado-Baizaval, J. L., & Ochoa-Terán, A. (2014). Coagulation–flocculation mechanisms in wastewater treatment plants through zeta potential measurements. Journal of Hazardous Materials, 279, 1–10. https://doi.org/10.1016/j.jhazmat.2014.06.025

    Article  CAS  Google Scholar 

  • Mamchenko, A. V., Gerasimenko, N. G., & Pakhar, T. A. (2011). The impact of temperature on the efficiency of the coagulation process of titanyl sulfate and aluminum sulfate. Journal of Water Chemistry and Technology, 33, 315–322. https://doi.org/10.3103/S1063455X11050079

    Article  Google Scholar 

  • Manda, I. K. M., Chidya, R. C. G., Saka, J. D. K., & Biswick, T. T. (2016). Comparative assessment of water treatment using polymeric and inorganic coagulants. Physics and Chemistry of the Earth Parts ABC, 93, 119–129. https://doi.org/10.1016/j.pce.2015.09.008

    Article  Google Scholar 

  • Manning, A. J., Langston, W. J., & Jonas, P. J. C. (2010). A review of sediment dynamics in the Severn estuary: Influence of flocculation. Marine Pollution Bulletin, 61, 37–51. https://doi.org/10.1016/j.marpolbul.2009.12.012

    Article  CAS  PubMed  Google Scholar 

  • Megersa, M., Gach, W., Beyene, A., Ambelu, A., & Triest, L. (2019). Effect of salt solutions on coagulation performance of Moringa stenopetala and Maerua subcordata for turbid water treatment. Sep Purif Technol, 221, 319–324. https://doi.org/10.1016/j.seppur.2019.04.013

  • Mejías, D. G., Chávez Delgado, M., Masyrubi, M., Chacín Ramos, E., & Fernández Acosta, N. (2010). Uso potencial del exudado gomoso de Cedrela odorata como agente coagulante para el tratamiento de las aguas destinadas a consumo humano. Rev For Venez, 54, 147–154 

    Google Scholar 

  • Mer, V. K. L., & Healy, T. W. (1963). The role of filtration in investigating flocculation and redispersion of colloidal dispersions. The Journal of Physical Chemistry, 67, 2417–2420. https://doi.org/10.1021/j100805a038

    Article  Google Scholar 

  • Miljojkovic, D., Trepsic, I., & Milovancevic, M. (2019). Assessment of physical and chemical indicators on water turbidity. Physica A: Statistical Mechanics and its Applications, 527, 121171. https://doi.org/10.1016/j.physa.2019.121171

    Article  CAS  Google Scholar 

  • Miyashiro, C. S., Mateus, G. A. P., dos Santos, T. R. T., Paludo, M. P., Bergamasco, R., & Fagundes-Klen, M. R. (2021). Synthesis and performance evaluation of a magnetic biocoagulant in the removal of reactive black 5 dye in aqueous medium. Mater Sci Eng C, 119, 111523. https://doi.org/10.1016/j.msec.2020.111523

  • Mohamed Noor, M. H., Lee, W. J., Mohd Azli, M. F. Z., Ngadi, N., & Mohamed, M.  (2021). Moringa oleifera extract as green coagulant for POME Treatment: Preliminary studies and sludge evaluation. Mater Today Proc. https://doi.org/10.1016/j.matpr.2021.02.241

  • Muniz, G. L., Borges, A. C., & da Silva, T. C. F. (2020). Performance of natural coagulants obtained from agro-industrial wastes in dairy wastewater treatment using dissolved air flotation. Journal of Water Process Engineering, 37, 101453. https://doi.org/10.1016/j.jwpe.2020.101453

    Article  Google Scholar 

  • Nharingo, T., Zivurawa, M. T., & Guyo, U. (2015). Exploring the use of cactus Opuntia ficus indica in the biocoagulation–flocculation of Pb (II) ions from wastewaters. International journal of Environmental Science and Technology, 12, 3791–3802. https://doi.org/10.1007/s13762-015-0815-0

    Article  CAS  Google Scholar 

  • Ni, C., Wang, J., Guan, Y., Jiang, B., Meng, X., Luo, S., Guo, S., et al. (2020). Self-powered peroxi-coagulation for the efficient removal of p-arsanilic acid: pH-dependent shift in the contributions of peroxidation and electrocoagulation. Chem Eng J, 391, 123495. https://doi.org/10.1016/j.cej.2019.123495

  • Obiora-Okafo, I. A., Onukwuli, O. D., & Ezugwu, C. N. (2019). Application of kinetics and mathematical modelling for the study of colour removal from aqueous solution using natural organic polymer. Desalination and Water Treatment, 165, 362–373. https://doi.org/10.5004/dwt.2019.24507

    Article  CAS  Google Scholar 

  • Oyegbile, B., Ay, P., & Narra, S. (2016). Flocculation kinetics and hydrodynamic interactions in natural and engineered flow systems: A review. Environmental Engineering Research, 21, 1–14. https://doi.org/10.4491/eer.2015.086

    Article  Google Scholar 

  • Padhiyar, H., Thanki, A., Kumar Singh, N., Pandey, S., Yadav, M., & Chand Yadav, T. (2020). Parametric and kinetic investigations on segregated and mixed textile effluent streams using Moringa oleifera seed powders of different sizes. J Water Process Eng, 34, 101159. https://doi.org/10.1016/j.jwpe.2020.101159

  • Pallier, V., Feuillade-Cathalifaud, G., Serpaud, B., & Bollinger, J.-C. (2010). Effect of organic matter on arsenic removal during coagulation/flocculation treatment. Journal of Colloid and Interface Science, 342, 26–32. https://doi.org/10.1016/j.jcis.2009.09.068

    Article  CAS  PubMed  Google Scholar 

  • Park, S.-J., & Seo, M.-K. (2011). Chapter 1 - Intermolecular force. In S.-J. Park & M.-K. Seo (Eds.), Interface science and technology (pp. 1–57). Elsevier.

    Google Scholar 

  • Parker, D. S., Kaufman, W. J., & Jenkins, D. (1971). Physical conditioning of activated sludge Floc. Journal - Water Pollution Control Federation, 43, 1817–1833.

    CAS  Google Scholar 

  • Pieterse, A. J. H., & Cloot, A. (1997). Algal cells and coagulation, flocculation and sedimentation processes. Water Science and Technology, 36, 111–118. https://doi.org/10.1016/S0273-1223(97)00427-7

    Article  Google Scholar 

  • Ramavandi, B. (2014). Treatment of water turbidity and bacteria by using a coagulant extracted from Plantago ovata. Water Resources and Industry, 6, 36–50. https://doi.org/10.1016/j.wri.2014.07.001

  • Rossini, M., Garrido, J. G., & Galluzzo, M. (1999). Optimization of the coagulation–flocculation treatment: influence of rapid mix parameters. Water Research, 33, 1817–1826. https://doi.org/10.1016/S0043-1354(98)00367-4

    Article  CAS  Google Scholar 

  • Saleem, M., & Bachmann, R. T. (2019). A contemporary review on plant-based coagulants for applications in water treatment. Journal of Industrial and Engineering Chemistry, 72, 281–297. https://doi.org/10.1016/j.jiec.2018.12.029

    Article  CAS  Google Scholar 

  • Saxena, K., Brighu, U., & Choudhary, A. (2019). Coagulation of humic acid and kaolin at alkaline pH: Complex mechanisms and effect of fluctuating organics and turbidity. Journal of Water Process Engineering, 31, 100875. https://doi.org/10.1016/j.jwpe.2019.100875

    Article  Google Scholar 

  • Shammas, N. K. (2005). Coagulation and flocculation. In L. K. Wang, Y.-T. Hung, & N. K. Shammas (Eds.), Physicochemical treatment processes (pp. 103–139). Humana Press.

    Chapter  Google Scholar 

  • Soler, M., Serra, T., Folkard, A., & Colomer, J. (2020). Hydrodynamics and sediment deposition in turbidity currents: Comparing continuous and patchy vegetation canopies, and the effects of water depth. Journal of Hydrology, 2020, 125750. https://doi.org/10.1016/j.jhydrol.2020.125750

    Article  Google Scholar 

  • Sun, Y., Sun, W., Shah, K. J., Chiang, P.-C., & Zheng, H. (2019). Characterization and flocculation evaluation of a novel carboxylated chitosan modified flocculant by UV initiated polymerization. Carbohydr Polym, 208, 213–220. https://doi.org/10.1016/j.carbpol.2018.12.064

  • Tatsi, A. A., Zouboulis, A. I., Matis, K. A., & Samaras, P. (2003). Coagulation–flocculation pretreatment of sanitary landfill leachates. Chemosphere, 53, 737–744. https://doi.org/10.1016/S0045-6535(03)00513-7

    Article  CAS  PubMed  Google Scholar 

  • Teh, C. Y., & Wu, T. Y. (2014). The potential use of natural coagulants and flocculants in the treatment of urban waters. Chemical Engineering Transactions, 39, 1603–1608. https://doi.org/10.3303/CET1439268

    Article  Google Scholar 

  • Tian, C., & Zhao, Y.-X. (2021). Dosage and pH dependence of coagulation with polytitanium salts for the treatment of Microcystis aeruginosa-laden and Microcystis wesenbergii-laden surface water: The influence of basicity. Journal of Water Process Engineering, 39, 101726. https://doi.org/10.1016/j.jwpe.2020.101726

  • Tinterri, R., Civa, A., Laporta, M., & Piazza, A. (2020). Chapter 17 - Turbidites and turbidity currents. In: Scarselli N, Adam J, Chiarella D, et al. (eds) Regional Geology and Tectonics (Second Edition). Elsevier, pp 441–479. 

    Google Scholar 

  • Usefi, S., & Asadi-Ghalhari, M. (2019). Modeling and optimization of the coagulation–flocculation process in turbidity removal from aqueous solutions using rice starch. Pollution, 5, 623–636. https://doi.org/10.22059/poll.2019.271649.552

    Article  CAS  Google Scholar 

  • Vignesh, A., Manigundan, K., Santhoshkumar, J., Shanmugasundaram, T., Gopikrishnan, V., Radhakrishnan, M., et al. (2020). Microbial degradation, spectral analysis and toxicological assessment of malachite green by Streptomyces chrestomyceticus S20. Bioprocess Biosyst Eng, 43, 1457–1468. https://doi.org/10.1007/s00449-020-02339-z

  • Vogt, R. D., Seip, H. M., Orefellen, H., Skotte, G., Irgens, C., & Tyszka, J. (2001). Trends in Soil Water Composition at a Heavily Polluted Site – Effects of Decreased S-Deposition and Variations in Precipitation. Water Air Soil Pollut, 130, 1445–1450. https://doi.org/10.1023/A:1013960930000

  • Wilén, B.-M., & Balmér, P. (1999). The effect of dissolved oxygen concentration on the structure, size and size distribution of activated sludge flocs. Water Research, 33, 391–400. https://doi.org/10.1016/S0043-1354(98)00208-5

    Article  Google Scholar 

  • Zahrim, A. Y., Dexter, Z. D., Joseph, C. G., & Hilal, N. (2017). Effective coagulation-flocculation treatment of highly polluted palm oil mill biogas plant wastewater using dual coagulants: Decolourisation, kinetics and phytotoxicity studies. Journal of Water Process Engineering, 16, 258–269. https://doi.org/10.1016/j.jwpe.2017.02.005

    Article  Google Scholar 

  • Zhang, Z., Jing, R., He, S., Qian, J., Zhang, K., Ma, G., et al. (2018). Coagulation of low temperature and low turbidity water: Adjusting basicity of polyaluminum chloride (PAC) and using chitosan as coagulant aid. Sep Purif Technol, 206, 131–139. https://doi.org/10.1016/j.seppur.2018.05.051

  • Zhou, B., Shang, M., Feng, L., et al. (2020). Long-term remote tracking the dynamics of surface water turbidity using a density peaks-based classification: A case study in the Three Gorges Reservoir, China. Ecological Indicators, 116, 106539. https://doi.org/10.1016/j.ecolind.2020.106539

    Article  Google Scholar 

  • Zhu, G., Zheng, H., Zhang, Z., Tshukudu, T., Zhang, P., & Xiang, X. (2011). Characterization and coagulation–flocculation behavior of polymeric aluminum ferric sulfate (PAFS). Chem Eng J, 178, 50–59. https://doi.org/10.1016/j.cej.2011.10.008

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ricardo J. Baquerizo-Crespo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Loor-Moreira, C.L. et al. (2021). Generalities of the Coagulation-Flocculation Process: A Perspective on Biocoagulants. In: Maddela, N.R., García, L.C. (eds) Innovations in Biotechnology for a Sustainable Future. Springer, Cham. https://doi.org/10.1007/978-3-030-80108-3_16

Download citation

Publish with us

Policies and ethics