Skip to main content

Advanced Oncologic Spine Imaging

  • Chapter
  • First Online:
Image Guided Interventions of the Spine
  • 795 Accesses

Abstract

Patients with cancer are benefiting from rapid advances in oncology, with new discoveries in tumor biology facilitating the development of novel treatments such as immunotherapies and chemotherapies based upon tumor genetic subtypes. The development and increasing use of stereotactic radiosurgery have revolutionized care of patients with osseous metastases, as it provides excellent local tumor control regardless of tumor histology, allowing for treatment of tumor types that were resistant to conventional external beam radiation. In the area of spine surgery, minimally invasive techniques are now utilized on patients who cannot tolerate the larger, morbid surgeries of the past. The growing desirability of evidence-based treatments has resulted in the development of management algorithms that allow a personalized approach to each patient. These frameworks guide discussion in multidisciplinary meetings, suggesting treatments based upon the most current evidence and options. In the midst of all of these advances, imaging—conventional and advanced—remains vital for characterization of disease, before and after treatment. As an integral part of the multidisciplinary treatment team, radiologists must be familiar with the most current treatments, tools, and management paradigms, in order to provide the specific information that informs decision-making for optimal patient care.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cuccurullo V, Cascini GL, Tamburrini O, Rotondo A, Mansi L. Bone metastases radiopharmaceuticals: an overview. Curr Radiopharm. 2013;6(1):41–7.

    Article  CAS  PubMed  Google Scholar 

  2. Choi J, Raghavan M. Diagnostic imaging and image-guided therapy of skeletal metastases. Cancer Control. 2012;19(2):102–12.

    Article  PubMed  Google Scholar 

  3. Buhmann-Kirchhoff S, Becker C, Duerr HR, Reiser M, Baur-melnyk A. Detection of osseous metastases of the spine: comparison of high resolution multi-detector-CT with MRI. Eur J Radiol. 2009;69(3):567–73.

    Article  PubMed  Google Scholar 

  4. Zhadanov SI, Doshi AH, Pawha PS, Corcuera-solano I, Tanenbaum LN. Contrast-enhanced Dixon fat-water separation imaging of the spine: added value of fat, in-phase and opposed-phase imaging in marrow lesion detection. J Comput Assist Tomogr. 2016;40(6):985–90.

    Article  PubMed  Google Scholar 

  5. Maeder Y, Dunet V, Richard R, Becce F, Omoumi P. Bone marrow metastases: T2-weighted Dixon spin-echo fat images can replace t1-weighted spin-echo images. Radiology. 2018;286(3):948–59.

    Article  PubMed  Google Scholar 

  6. van Vucht N, Santiago R, Lottmann B, Pressney I, Harder D, Sheikh A, Saifuddin A. The Dixon technique for MRI of the bone marrow. Skelet Radiol. 2019;48(12):1861–74.

    Article  Google Scholar 

  7. Kumar NM, Ahlawat S, Fayad LM. Chemical shift imaging with in-phase and opposed-phase sequences at 3 T: what is the optimal threshold, measurement method, and diagnostic accuracy for characterizing marrow signal abnormalities? Skelet Radiol. 2018;47(12):1661–71.

    Article  Google Scholar 

  8. Suh CH, Yun SJ, Jin W, Park SY, Ryu C-W, Lee SH. Diagnostic performance of in-phase and opposed-phase chemical-shift imaging for differentiating benign and malignant vertebral marrow lesions: a meta-analysis. AJR Am J Roentgenol. 2018;211(4):W188–97.

    Article  PubMed  Google Scholar 

  9. Stradiotti P, Curti A, Castellazzi G, Zerbi A. Metal-related artifacts in instrumented spine. Techniques for reducing artifacts in CT and MRI: state of the art. Eur Spine J. 2009;18(Suppl 1):102–8.

    Article  PubMed  PubMed Central  Google Scholar 

  10. McLellan AM, Daniel S, Corcuera-Solano I, Joshi V, Tanenbaum LN. Optimized imaging of the postoperative spine. Neuroimaging Clin N Am. 2014;24(2):349–64.

    Article  PubMed  Google Scholar 

  11. Ringel F, Ryang YM, Kirschke JS, Müller BS, Wilkens JJ, Brodard J, et al. Radiolucent carbon fiber-reinforced pedicle screws for treatment of spinal tumors: advantages for radiation planning and follow-up imaging. World Neurosurg. 2017;105:294–301.

    Article  PubMed  Google Scholar 

  12. Laufer I, Bilsky MH. Advances in the treatment of metastatic spine tumors: the future is not what it used to be. J Neurosurg Spine. 2019;30(3):299–307.

    Article  PubMed  Google Scholar 

  13. Choi D, Bilsky M, Fehlings M, Fisher C, Gokaslan Z. Spine oncology-metastatic spine tumors. Neurosurgery. 2017;80(3S):S131–7.

    Article  PubMed  Google Scholar 

  14. Lang N, Su MY, Yu HJ, Lin M, Hamamura MJ, Yuan H. Differentiation of myeloma and metastatic cancer in the spine using dynamic contrast-enhanced MRI. Magn Reson Imaging. 2013;31(8):1285–91.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Cao Y. The promise of dynamic contrast-enhanced imaging in radiation therapy. Semin Radiat Oncol. 2011;21(2):147–56.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Verstraete KL, Van der Woude HJ, Hogendoorn PC, De-deene Y, Kunnen M, Bloem JL. Dynamic contrast-enhanced MR imaging of musculoskeletal tumors: basic principles and clinical applications. J Magn Reson Imaging. 1996;6(2):311–21.

    Article  CAS  PubMed  Google Scholar 

  17. Dutoit JC, Vanderkerken MA, Verstraete KL. Value of whole body MRI and dynamic contrast enhanced MRI in the diagnosis, follow-up and evaluation of disease activity and extent in multiple myeloma. Eur J Radiol. 2013;82(9):1444–52.

    Article  PubMed  Google Scholar 

  18. Lavini C, De Jonge MC, Van de Sande MG, Tak PP, Nederveen AJ, Maas M. Pixel-by-pixel analysis of DCE MRI curve patterns and an illustration of its application to the imaging of the musculoskeletal system. Magn Reson Imaging. 2007;25(5):604–12.

    Article  PubMed  Google Scholar 

  19. Tofts PS. Modeling tracer kinetics in dynamic Gd-DTPA MR imaging. J Magn Reson Imaging. 1997;7(1):91–101.

    Article  CAS  PubMed  Google Scholar 

  20. Guan Y, Peck KK, Lyo J, Tisnado J, Lis E, Arevalo-Perez J, et al. T1-weighted dynamic contrast-enhanced MRI to differentiate nonneoplastic and malignant vertebral body lesions in the spine. Radiology. 2020;297(2):382–9.

    Article  PubMed  Google Scholar 

  21. Chu S, Karimi S, Peck KK, Yamada Y, Lis E, Lyo J, Bilsky M, et al. Measurement of blood perfusion in spinal metastases with dynamic contrast-enhanced magnetic resonance imaging: evaluation of tumor response to radiation therapy. Spine (Phila Pa 1976). 2013;38(22):E1418–24.

    Article  Google Scholar 

  22. Saha A, Peck KK, Lis E, Holodny AI, Yamada Y, Karimi S. Magnetic resonance perfusion characteristics of hyper-vascular renal and hypovascular prostate spinal metastases: clinical utilities and implications. Spine (Phila Pa 1976). 2014;39:E1433–40.

    Article  Google Scholar 

  23. Kumar KA, Peck KK, Karimi S, Lis E, Holodny AI, Bilsky MH, Yamada Y. A pilot study evaluating the use of dynamic contrast-enhanced perfusion MRI to predict local recurrence after radiosurgery on spinal metastases. Technol Cancer Res Treat. 2017;16(6):857–65.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Byun WM, Shin SO, Chang Y, Lee SJ, Finsterbusch J, Frahm J. Diffusion-weighted MR imaging of metastatic disease of the spine: assessment of response to therapy. AJNR Am J Neuroradiol. 2002;23(6):906–12.

    PubMed  PubMed Central  Google Scholar 

  25. Padhani AR, Koh DM, Collins DJ. Whole-body diffusion-weighted MR imaging in cancer: current status and research directions. Radiology. 2011;261(3):700–18.

    Article  PubMed  Google Scholar 

  26. Tanenbaum LN. Clinical applications of diffusion imaging in the spine. Magn Reson Imaging Clin N Am. 2013;21(2):299–320.

    Article  PubMed  Google Scholar 

  27. Herneth AM, Philipp MO, Naude J, Funovics M, Beichel RR, Bammer R, Imhof H. Vertebral metastases: assessment with apparent diffusion coefficient. Radiology. 2002;225(3):889–94.

    Article  PubMed  Google Scholar 

  28. Baur A, Stäbler A, Brüning R, Bartl R, Krödel A, Reiser M, Deimling M. Diffusion-weighted MR imaging of bone marrow: differentiation of benign versus pathologic compression fractures. Radiology. 1998;207(2):349–56.

    Article  CAS  PubMed  Google Scholar 

  29. Castillo M, Arbelaez A, Smith JK, Fisher LL. Diffusion-weighted MR imaging offers no advantage over routine noncontrast MR imaging in the detection of vertebral metastases. AJNR Am J Neuroradiol. 2000;21(5):948–53.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Baur A, Huber A, Ertl-Wagner B, Dürr R, Zysk S, Arbogast S, et al. Diagnostic value of increased diffusion weighting of a steady-state free precession sequence for differentiating acute benign osteoporotic fractures from pathologic vertebral compression fractures. AJNR Am J Neuroradiol. 2001;22(2):366–72.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Thawait SK, Marcus MA, Morrison WB, Klufas RA, Eng J, Carrino JA. Research synthesis: what is the diagnostic performance of magnetic resonance imaging to discriminate benign from malignant vertebral compression fractures? Systematic review and meta-analysis. Spine (Phila Pa 1976). 2012;37(12):E736–44.

    Article  Google Scholar 

  32. Sung JK, Jee WH, Jung JY, Choi M, Lee SY, Kim YH, et al. Differentiation of acute osteoporotic and malignant compression fractures of the spine: use of additive qualitative and quantitative axial diffusion-weighted MR imaging to conventional MR imaging at 3.0 T. Radiology. 2014;271(2):488–98.

    Article  PubMed  Google Scholar 

  33. Kaur A, Thukral CL, Khanna G, Singh P. Role of diffusion-weighted magnetic resonance imaging in the evaluation of vertebral bone marrow lesions. Pol J Radiol. 2020;85:e215–23.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Koutoulidis V, Fontara S, Terpos E, Zagouri F, Matsaridis D, Christoulas D, et al. Quantitative diffusion-weighted imaging of the bone marrow: an adjunct tool for the diagnosis of a diffuse MR imaging pattern in patients with multiple myeloma. Radiology. 2017;282(2):484–93.

    Article  PubMed  Google Scholar 

  35. Kosmala A, Weng AM, Heidemeier A, Krauss B, Knop S, Bley TA, Petritsch B. Multiple myeloma and dual-energy CT: diagnostic accuracy of virtual noncalcium technique for detection of bone marrow infiltration of the spine and pelvis. Radiology. 2018;286(1):205–13.

    Article  PubMed  Google Scholar 

  36. Katsura M, Sato J, Akahane M, Kunimatsu A, Abe O. Current and novel techniques for metal artifact reduction at CT: practical guide for radiologists. Radiographics. 2018;38(2):450–61.

    Article  PubMed  Google Scholar 

  37. Shah LM, Salzman KL. Imaging of spinal metastatic disease. Int J Surg Oncol. 2011;2011:769753.

    PubMed  PubMed Central  Google Scholar 

  38. Even-Sapir E, Metser U, Mishani E, Lievshitz G, Lerman H, Leibovitch I. The detection of bone metastases in patients with high-risk prostate cancer: 99mTc-MDP Planar bone scintigraphy, single- and multi-field-of-view SPECT, 18F-fluoride PET, and 18F-fluoride PET/CT. J Nucl Med. 2006;47(2):287–97.

    PubMed  Google Scholar 

  39. Baur-Melnyk A. Malignant versus benign vertebral collapse: are new imaging techniques useful? Cancer Imaging. 2009;9 Spec No A(Special issue A):S49–51.

    Article  PubMed  Google Scholar 

  40. Cho WI, Chang UK. Comparison of MR imaging and FDG-PET/CT in the differential diagnosis of benign and malignant vertebral compression fractures. J Neurosurg Spine. 2011;14(2):177–83.

    Article  PubMed  Google Scholar 

  41. Mahajan A, Azad GK, Cook GJ. PET imaging of skeletal metastases and its role in personalizing further management. PET Clin. 2016;11(3):305–18.

    Article  PubMed  Google Scholar 

  42. Mick CG, James T, Hill JD, Williams P, Perry M. Molecular imaging in oncology: (18)F-sodium fluoride PET imaging of osseous metastatic disease. AJR Am J Roentgenol. 2014;203(2):263–71.

    Article  PubMed  Google Scholar 

  43. Barzilai O, Laufer I, Yamada Y, Higginson DS, Schmitt AM, Lis E, Bilsky MH. Integrating evidence-based medicine for treatment of spinal metastases into a decision framework: neurologic, oncologic, mechanicals stability, and systemic disease. J Clin Oncol. 2017;35(21):2419–27.

    Article  CAS  PubMed  Google Scholar 

  44. Kaloostian PE, Yurter A, Zadnik PL, Sciubba DM, Gokaslan ZL. Current paradigms for metastatic spinal disease: an evidence-based review. Ann Surg Oncol. 2014;21(1):248–62.

    Article  CAS  PubMed  Google Scholar 

  45. Goodwin CR, Abu-Bonsrah N, Rhines LD, Verlaan JJ, Bilsky MH, Laufer I, et al. Molecular markers and targeted therapeutics in metastatic tumors of the spine: changing the treatment paradigms. Spine (Phila Pa 1976). 2016;41(Suppl 20):S218–23.

    Article  Google Scholar 

  46. Laufer I, Rubin DG, Lis E, Cox BW, Stubblefield MD, Yamada Y, Bilsky MH. The NOMS framework: approach to the treatment of spinal metastatic tumors. Oncologist. 2013;18(6):744–51.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Paton GR, Frangou E, Fourney DR. Contemporary treatment strategy for spinal metastasis: the “LMNOP” system. Can J Neurol Sci. 2011;38(3):396–403.

    Article  PubMed  Google Scholar 

  48. Bilsky MH, Laufer I, Fourney DR, Groff M, Schmidt MH, Varga PP, et al. Reliability analysis of the epidural spinal cord compression scale. J Neurosurg Spine. 2010;13(3):324–8.

    Article  PubMed  Google Scholar 

  49. Fisher CG, DiPaola CP, Ryken TC, Bilsky MH, Shaffrey CI, Berven SH, et al. A novel classification system for spinal instability in neoplastic disease: an evidence-based approach and expert consensus from the Spine Oncology Study Group. Spine (Phila Pa 1976). 2010;35(22):E1221–9.

    Article  Google Scholar 

  50. Miller JA, Balagamwala EH, Angelov L, Suh JH, Rini B, Garcia JA, et al. Spine stereotactic radiosurgery with concurrent tyrosine kinase inhibitors for metastatic renal cell carcinoma. J Neurosurg Spine. 2016;25(6):766–74.

    Article  PubMed  Google Scholar 

  51. Rao SS, Thompson C, Cheng J, Haimovitz-Friedman A, Powell SN, Fuks Z, Kolesnick RN. Axitinib sensitization of high single dose radiotherapy. Radiother Oncol. 2014;111(1):88–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Sia J, Szmyd R, Hau E, Gee HE. Molecular mechanisms of radiation-induced cancer cell death: a primer. Front Cell Dev Biol. 2020;8:41.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Barzilai O, Fisher CG, Bilsky MH. State of the art treatment of spinal metastatic disease. Neurosurgery. 2018;82(6):757–69.

    Article  PubMed  Google Scholar 

  54. Fisher CG, Versteeg AL, Schouten R, Boriani S, Varga PP, Rhines LD, et al. Reliability of the spinal instability neoplastic scale among radiologists: an assessment of instability secondary to spinal metastases. AJR Am J Roentgenol. 2014;203(4):869–74.

    Article  PubMed  Google Scholar 

  55. Ehresman J, Pennington Z, Schilling A, Lubelski D, Ahmed AK, Cottrill E, Khan M, et al. Novel MRI-based score for assessment of bone density in operative spine patients. Spine J. 2020;20(4):556–62.

    Article  PubMed  Google Scholar 

  56. Faruqi S, Tseng CL, Whyne C, Alghamdi M, Wilson J, Myrehaug S, et al. Vertebral compression fracture after spine stereotactic body radiation therapy: a review of the pathophysiology and risk factors. Neurosurgery. 2018;83(3):314–22.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gibbs, W.N., Frederick, R.P. (2021). Advanced Oncologic Spine Imaging. In: Khan, M., Kushchayev, S.V., Faro, S.H. (eds) Image Guided Interventions of the Spine. Springer, Cham. https://doi.org/10.1007/978-3-030-80079-6_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-80079-6_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-80078-9

  • Online ISBN: 978-3-030-80079-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics