Skip to main content

Alpha-Cyclodextrin Functions as a Dietary Fiber

  • Chapter
  • First Online:
Functionality of Cyclodextrins in Encapsulation for Food Applications
  • 520 Accesses

Abstract

Dietary fiber is an essential nutrient and promotes health. Cyclodextrins (CDs) are cyclic oligosaccharides that are composed of glucopyranose molecules linked by α-1,4-glycosidic bonds. CDs are used as food additives and in pharmaceutical formulations because they improve the stability and water solubility of guest molecules. Furthermore, alpha-cyclodextrin (α-CD) is a safe food additive that is not degraded by human digestive enzymes but by the gut microbiota. Because of this, it represents a source of dietary fiber and promotes health. Several studies have shown that α-CD can ameliorate or prevent metabolic disease because it inhibits carbohydrate, fat, and cholesterol absorption by encapsulating digestive enzymes, phospholipids, and food ingredients. Furthermore, α-CD has various health promoting effects that are exerted via effects on the gut microbiota, which include anti-obesity and anti-atherosclerotic effects, the amelioration of constipation, bone strengthening, the improvement of gut immunity, the amelioration of allergic disease, and the improvement of exercise performance. Interestingly, the prebiotic effects of α-CD differ from those of conventional beneficial fermentable dietary fibers, which exert their effects via Bifidobacterium, because it affects Lactobacillus and Bacteroides, which readily generate short-chain fatty acids. In conclusion, α-CD is a useful type of dietary fiber because it has two distinct beneficial effects: to form complexes with guest molecules and to act as a prebiotic.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agarwal P, Gupta R (2016) Alpha-amylase inhibition can treat diabetes mellitus. Res Rev J Med Health Sci 5(4):1–8

    Google Scholar 

  • Aller R, de Luis DA, Izaola O et al (2004) Effect of soluble fiber intake in lipid and glucose levels in healthy subjects: a randomized clinical trial. Diabetes Res Clin Pract 65(1):7–11

    Article  CAS  PubMed  Google Scholar 

  • Amar MJA, Kaler M, Courville AB et al (2016) Randomized double blind clinical trial on the effect of oral α-cyclodextrin on serum lipids. Lipids Health Dis 15(1):115

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Anderson JW, Baird P, Davis RH et al (2009) Health benefits of dietary fiber. Nutr Rev 67(4):188–205

    Article  PubMed  Google Scholar 

  • Antenucci RN, Palmer JK (1984) Enzymatic degradation of alpha- and beta-cyclodextrins by Bacteroides of the human colon. J Agric Food Chem 32(6):1316–1321

    Article  CAS  Google Scholar 

  • Artiss JD, Brogan K, Brucal M et al (2006) The effects of a new soluble dietary fiber on weight gain and selected blood parameters in rats. Metab Clin Exp 55(2):195–202

    Article  CAS  PubMed  Google Scholar 

  • Astrup A (2005) The role of dietary fat in obesity. Semin Vasc Med 5(1):40–47

    Article  PubMed  Google Scholar 

  • Besten GD, Eunen KV, Groen AK et al (2013) The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. J Lipid Res 54:2325–2340

    Article  CAS  Google Scholar 

  • Bourriaud C, Robins RJ, Martin L et al (2005) Lactate is mainly fermented to butyrate by human intestinal microfloras but inter-individual variation is evident. J Appl Microbiol 99(1):201–212

    Article  CAS  PubMed  Google Scholar 

  • Brown EM, Macleod RJ (2001) Extracellular calcium sensing and extracellular calcium signaling. Physiol Rev 81:239–297

    Article  CAS  PubMed  Google Scholar 

  • Buckley JD, Thorp AA, Murphy KL et al (2006) Dose-dependent inhibition of the post-prandial glycaemic response to a standard carbohydrate meal following incorporation of alpha-cyclodextrin. Ann Nutr Metab 50:108–114

    Article  CAS  PubMed  Google Scholar 

  • Cani PD, Bibiloni R, Knauf C et al (2008) Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat diet-induced obesity and diabetes in mice. Diabetes 57(6):1470–1481

    Article  CAS  PubMed  Google Scholar 

  • Cavalot F, Petrelli A, Traversa M et al (2006) Postprandial blood glucose is a stronger predictor of cardiovascular events than fasting blood glucose in type 2 diabetes mellitus, particularly in women: lessons from the San Luigi Gonzaga Diabetes Study. J Clin Endocrinol Metab 91(3):813–819

    Article  CAS  PubMed  Google Scholar 

  • Chiu CY, Cheng ML, Chiang MH et al (2019) Gut microbial-derived butyrate is inversely associated with IgE responses to allergens in childhood asthma. Pediatr Allergy Immunol 30(7):689–697

    Article  PubMed  Google Scholar 

  • Chun SC, Schneider RW, Chung IM (2003) Determination of carbon source utilization of Bacillus and Pythium species by biolog® microplate assay. J Microbiol 41(3):252–258

    CAS  Google Scholar 

  • Comerford KB, Artiss JD, Jen KLC et al (2012) The beneficial effects α-cyclodextrin on blood lipids and weight loss in healthy humans. Obesity 19(6):1200–1204

    Article  CAS  Google Scholar 

  • Evenepoel P, Poesen R, Meijers B (2017) The gut–kidney axis. Pediatr Nephrol 32:2005–2014

    Article  PubMed  Google Scholar 

  • Frostegård J (2013) Immunity, atherosclerosis and cardiovascular disease. BMC Med 11:117

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fujikawa S, Okazaki M, Matsumoto N et al (1991) Effect of xylooligosaccharide on growth of intestinal bacteria and putrefaction products. J Jpn Soc Nutr Food Sci 44:37–40

    Article  CAS  Google Scholar 

  • Fujita K, Hara K, Nakayama S et al (1999) Effect of 4G-beta-galactosylsucrose (lactosucrose) on bone in weanling rats. J Jpn Soc Nutr Food Sci 52:343–348

    Article  CAS  Google Scholar 

  • Furune T, Ikuta N, Ishida Y et al (2014) A study on the inhibitory mechanism for cholesterol absorption by α-cyclodextrin administration. J Org Chem 10:2827–2835

    Google Scholar 

  • Furusawa Y, Obata Y, Fukuda S et al (2013) Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells. Nature 504:446–450

    Article  CAS  PubMed  Google Scholar 

  • Gallaher D, Gallaher C, Plank D (2007) Alpha-cyclodextrin selectively increases fecal excretion of saturated fats. FASEB J 21:A730

    Article  Google Scholar 

  • Ge X, Zhao W, Ding C et al (2017) Potential role of fecal microbiota from patients with slow transit constipation in the regulation of gastrointestinal motility. Sci Rep 7:441

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gentilcore D, Vanis L, Teng J et al (2011) The oligosaccharide a-cyclodextrin has modest effects to slow gastric emptying and modify the glycaemic response to sucrose in healthy older adults. Br J Nutr 106(4):583–587

    Article  CAS  PubMed  Google Scholar 

  • Gibson GR, Scott KP, Rastall RA et al (2010) Dietary prebiotics: current status and new definition. Food Sci Technol Bull Funct Foods 7:1–19

    Article  Google Scholar 

  • Gould H, Sutton B (2008) IgE in allergy and asthma today. Nat Rev Immunol 8:205–217

    Article  CAS  PubMed  Google Scholar 

  • Grunberger G, Jen KLC, Artiss JD (2007) The benefits of early intervention in obese diabetic patients with FBCx™—new dietary fibre. Diabetes Metab Res Rev 23:56–62

    Article  CAS  PubMed  Google Scholar 

  • Hirano T, Ito Y, Koba S et al (2005) Clinical significance of small dense low-density lipoprotein cholesterol levels determined by the simple precipitation method. Arterioscler Thromb Vasc Biol 24(3):558–563

    Article  CAS  Google Scholar 

  • Holscher HD (2017) Dietary fiber and prebiotics and the gastrointestinal microbiota. Gut Microbes 8(2):172–184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ivanova EA, Myasoedova VA, Melnichenko AA et al (2017) Small dense low-density lipoprotein as biomarker for atherosclerotic diseases. Oxidative Med Cell Longev 2017:1273042

    Article  CAS  Google Scholar 

  • Jarosz PA, Fletcher E, Elserafy E et al (2013) The effect of α-cyclodextrin on postprandial lipid and glycemic responses to a fat-containing meal. Metabolism 62(10):1443–1447

    Article  CAS  PubMed  Google Scholar 

  • Jo A, Nakata D, Terao K et al (2007) New synbiotics by the combination of α-cyclodextrin and lactic acid bacteria. In: Proceedings of 25th Cyclodextrin symposium in Japan, Tochigi, pp 144–145

    Google Scholar 

  • Jo A, Nakata D, Terao K et al (2011) Inhibition effect by alpha Cyclodextrin on an elevation of blood glucose level after administration of sucrose. In: Proceedings of 33rd Annual meeting of the Japanese Society of Clinical Nutrition, Tokyo, p 124

    Google Scholar 

  • Jonsson A, Bäckhed F (2017) Role of gut microbiota in atherosclerosis. Nat Rev Cardiol 14:79–87

    Article  CAS  PubMed  Google Scholar 

  • Kikuchi K, Saigusa D, Kanemitsu Y et al (2019) Gut microbiome-derived phenyl sulfate contributes to albuminuria in diabetic kidney disease. Nat Commun 10:1835

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Knopp RH, Gitter H, Truitt T et al (2003) Effects of ezetimibe, a new cholesterol absorption inhibitor, on plasma lipids in patients with primary hypercholesterolemia. Eur Heart J 24(8):729–741

    Article  CAS  PubMed  Google Scholar 

  • Labes A, Schönheit P (2007) Unusual starch degradation pathway via cyclodextrins in the hyperthermophilic sulfate-reducing archaeon archaeoglobus fulgidus strain 7324. J Bacteriol 189(24):8901–8913

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Larson SB, Day LS, McPherson A (2010) X-ray crystallographic analyses of pig pancreatic α-amylase with limit dextrin, oligosaccharide, and α-cyclodextrin. Biochemistry 49(14):3101–3115

    Article  CAS  PubMed  Google Scholar 

  • Lattimer JM, Haub MD (2010) Effects of dietary fiber and its components on metabolic health. Nutrients 2:1266–1289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lemieux I, Couillard C, Pascot A et al (2000) The small, dense LDL phenotype as a correlate of postprandial lipemia in men. Atherosclerosis 153:423–432

    Article  CAS  PubMed  Google Scholar 

  • Ley RE, Bäckhed F, Turnbaugh P et al (2005) Obesity alters gut microbial ecology. Proc Natl Acad Sci U S A 102(31):11070–11075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Z, Chen S, Gu Z et al (2014) Alpha-cyclodextrin: enzymatic production and food applications. Trends Food Sci Technol 35(2):151–160

    Article  CAS  Google Scholar 

  • Macfarlane S, Macfarlane GT (2003) Regulation of short-chain fatty acid production. Proc Nutr Soc 62(1):67–72

    Article  CAS  PubMed  Google Scholar 

  • Macpherson A, McCoy K, Johansen FE et al (2008) The immune geography of IgA induction and function. Mucosal Immunol 1:11–22

    Article  CAS  PubMed  Google Scholar 

  • McCabe L, Britton RA, Parameswaran N (2015) Prebiotic and probiotic regulation of bone health: role of the intestine and its microbiome. Curr Osteoporos Rep 13:363–371

    Article  PubMed  PubMed Central  Google Scholar 

  • Mineo H, Hara H, Tomita F (2001) Short-chain fatty acids enhance diffusional Ca transport in the epithelium of the rat cecum and colon. Life Sci 69:517–526

    Article  CAS  PubMed  Google Scholar 

  • Morita H, Kano C, Ishii C et al (2020) Bacteroides uniformis enhances endurance exercise performance through gluconeogenesis. BioRxiv 2020:975730

    Google Scholar 

  • Nakanishi K, Nakata D, Konishi M et al (2007) Effect of cyclodextrin on allergic action of the PiCl-induced in NC/Nga mice. J Incl Phenom Macrocycl Chem 57:61–64

    Article  CAS  Google Scholar 

  • Nihei N, Okamoto H, Furune T et al (2018) Dietary α-cyclodextrin modifies gut microbiota and reduces fat accumulation in high-fat-diet-fed obese mice. BioFactors 44(4):336–347

    Google Scholar 

  • Odenwald MA, Turner JR (2017) The intestinal epithelial barrier: a therapeutic target? Nat Rev Gastroenterol Hepat 14:9–21

    Article  CAS  Google Scholar 

  • Ommen BV, de Bie ATHJ, Bär A (2004) Disposition of 14C-α-cyclodextrin in germ-free and conventional rats. Regul Toxicol Pharmacol 39:57–66

    Article  PubMed  CAS  Google Scholar 

  • Sakurai T, Sakurai A, Chen Y et al (2017) Dietary α-cyclodextrin reduces atherosclerosis and modifies gut flora in apolipoprotein E-deficient mice. Mol Nutr Food Res 61(8):1600804

    Article  CAS  Google Scholar 

  • Sasaki D, Sasaki K, Ikuta N et al (2018) Low amounts of dietary fibre increase in vitro production of short-chain fatty acids without changing human colonic microbiota structure. Sci Rep 8:435

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Siebold M, Frieling PV, Joppien R et al (1995) Comparison of the production of lactic acid by three different lactobacilli and its recovery by extraction and electrodialysis. Process Biochem 30(1):81–95

    Article  CAS  Google Scholar 

  • Tan J, McKenzie C, Vuillermin PJ et al (2016) Dietary fiber and bacterial SCFA enhance oral tolerance and protect against food allergy through diverse cellular pathways. Cell Rep 15(12):2809–2824

    Article  CAS  PubMed  Google Scholar 

  • Thurmond R, Gelfand E, Dunford P (2008) The role of histamine H1 and H4 receptors in allergic inflammation: the search for new antihistamines. Nat Rev Drug Discov 7:41–53

    Article  CAS  PubMed  Google Scholar 

  • Trompette A, Gollwitzer E, Yadava K et al (2014) Gut microbiota metabolism of dietary fiber influences allergic airway disease and hematopoiesis. Nat Med 20:159–166

    Article  CAS  PubMed  Google Scholar 

  • Tungland BC, Meyer D (2002) Nondigestible oligo- and polysaccharides (dietary fiber): their physiology and role in human health and food. Compr Rev Food Sci Food Saf 1(3):90–109

    Article  CAS  PubMed  Google Scholar 

  • Turroni F, Strati F, Foroni E et al (2012) Analysis of predicted carbohydrate transport systems encoded by Bifidobacterium bifidum PRL2010. Appl Environ Microbiol 78(14):5002–5012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Willemsen LEM, Koetsier MA, van Deventer SJH et al (2003) Short chain fatty acids stimulate epithelial mucin 2 expression through differential effects on prostaglandin E1 and E2 production by intestinal myofibroblasts. Gut 52:1442–1447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu W, Sun M, Chen F et al (2017) Microbiota metabolite short-chain fatty acid acetate promotes intestinal IgA response to microbiota which is mediated by GPR43. Mucosal Immunol 10:946–956

    Article  CAS  PubMed  Google Scholar 

  • Yan H, Ajuwon KM (2015) Mechanism of butyrate stimulation of triglyceride storage and adipokine expression during adipogenic differentiation of porcine stromovascular cells. PLoS One 10(12):e0145940

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Younes H, Demigné C, Rémésy C (1996) Acidic fermentation in the caecum increases absorption of calcium and magnesium in the large intestine of the rat. Br J Nutr 75(2):301–314

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keita Chikamoto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chikamoto, K., Terao, K. (2021). Alpha-Cyclodextrin Functions as a Dietary Fiber. In: Ho, T.M., Yoshii, H., Terao, K., Bhandari, B.R. (eds) Functionality of Cyclodextrins in Encapsulation for Food Applications. Springer, Cham. https://doi.org/10.1007/978-3-030-80056-7_13

Download citation

Publish with us

Policies and ethics