Abstract
Church–Turing computability, which is the standard notion of computation, is based on functions for which there is an effective method for constructing their values. However, intuitionistic mathematics, as conceived by Brouwer, extends the notion of effective algorithmic constructions by also admitting constructions corresponding to human experiences of mathematical truths, which are based on temporal intuitions. In particular, the key notion of infinitely proceeding sequences of freely chosen objects, known as free choice sequences, regards functions as being constructed over time. This paper describes how free choice sequences can be embedded in an implemented formal framework, namely the constructive type theory of the Nuprl proof assistant. Some broader implications of supporting such an extended notion of computability in a formal system are then discussed, focusing on formal verification and constructive mathematics.
This is a preview of subscription content, access via your institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsNotes
- 1.
- 2.
For simplicity, throughout this paper we focus on choice sequences of natural numbers.
- 3.
For a survey of the status of Church Thesis in type-theory-based proof assistants see [20].
- 4.
- 5.
This simplified description omits many components of the system which are not relevant to the current paper.
- 6.
- 7.
References
Allen, S.F., et al.: Innovations in Computational Type Theory using Nuprl. J. Appl. Logic 4(4), 428–469 (2006)
Anand, A., Rahli, V.: Towards a formally verified proof assistant. In: Klein, G., Gamboa, R. (eds.) ITP 2014. LNCS, vol. 8558, pp. 27–44. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08970-6_3
Avigad, J., Feferman, S.: Gödel’s functional (“Dialectica’’) interpretation. Handb. Proof Theor. 137, 337–405 (1998)
Beth, E.W.: Semantic construction of intuitionistic logic. J. Symbolic Logic 22(4), 363–365 (1957)
Bickford, M., Cohen, L., Constable, R.L., Rahli, V.: Computability beyond church-turing via choice sequences. In: Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2018, pp. 245–254 (2018)
Bickford, M., Cohen, L., Constable, R.L., Rahli, V.: Open Bar - a Brouwerian intuitionistic logic with a pinch of excluded middle. In: Baier, C., Goubault-Larrecq, J., (eds.), 29th EACSL Annual Conference on Computer Science Logic (CSL), vol. 183, LIPIcs, pp. 11:1–11:23 (2021)
Bishop, E., Bridges, D.: Constructive Analysis. GW, vol. 279. Springer, Heidelberg (1985). https://doi.org/10.1007/978-3-642-61667-9
Bridges, D., Richman, F.: Varieties of Constructive Mathematics. London Mathematical Society Lecture Notes Series, Cambridge University Press (1987)
Bridges, D., Richman, F.: Varieties of Constructive Mathematics. Cambridge University Press, Cambridge (1988)
Brouwer, L.E.J.: Begründung der mengenlehre unabhängig vom logischen satz vom ausgeschlossen dritten. zweiter teil: Theorie der punkmengen. Koninklijke Nederlandse Akademie van Wetenschappen te Amsterdam 12(7), (1919). Reprinted in Brouwer, L.E.J., Collected Works, Volume I: Philosophy and Foundations of Mathematics, edited by Heyting, A., North-Holland Publishing Co., Amsterdam, pp. 191–221 (1975)
Brouwer, L.E.J.: From frege to Gödel: A Source Book in Mathematical Logic, 1879–1931, chapter On the Domains of Definition of Functions (1927)
Church, A.: An unsolvable problem of elementary number theory. Am. J. Math. 58(2), 345–363 (1936)
Constable, R.L. et al.: Implementing Mathematics with the Nuprl Proof Development System. Prentice-Hall Inc, Hoboken (1986)
Coquand, T., Mannaa, B.: The independence of markov’s principle in type theory. In: Kesner, D., Pientka, B., (eds.) FSCD 2016, vol. 52 of LIPIcs, pp. 17:1–17:18. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2016)
Coquand, T., Mannaa, B., Ruch, F.: Stack semantics of type theory. In: 2017 32nd Annual ACM/IEEE Symposium on Logic in Computer Science (LICS), pp. 1–11 (2017)
The Coq Proof Assistant. http://coq.inria.fr/
Dyson, V.H., Kreisel, G.: Analysis of Beth’s Semantic Construction of Intuitionistic Logic. Stanford University (1961)
Escardó, M.H., Xu, C.: The inconsistency of a Brouwerian continuity principle with the curry-howard interpretation. In: 13th International Conference on Typed Lambda Calculi and Applications (TLCA), pp. 153–164 (2015)
Forster, Y.: Church’s thesis and related axioms in Coq’s type theory. In: Baier, C., Goubault-Larrecq, J., (eds.) 29th EACSL Annual Conference on Computer Science Logic (CSL 2021), vol. 183 of Leibniz International Proceedings in Informatics (LIPIcs), pp. 21:1–21:19, Dagstuhl, Germany (2021). Schloss Dagstuhl-Leibniz-Zentrum für Informatik
Kleene, S.C., Vesley, R.E.: The Foundations of Intuitionistic Mathematics, Especially in Relation to Recursive Functions. North-Holland Publishing Company, Amsterdam (1965)
Kreisel, G.: On weak completeness of intuitionistic predicate logic. J. Symb. Log. 27(2), 139–158 (1962)
Kreisel, G.: Lawless sequences of natural numbers. Compositio Mathematica 20, 222–248 (1968)
Kripke, S.A.: Semantical considerations on modal logic. Acta Philosophica Fennica 16(1963), 83–94 (1963)
Martin-Löf, P.: Constructive mathematics and computer programming. In: Proceedings of the Sixth International Congress for Logic, Methodology, and Philosophy of Science, pp. 153–175. Amsterdam, North Holland (1982)
Moschovakis, J.R.: An intuitionistic theory of lawlike, choice and lawless sequences. In: Logic Colloquium’90: ASL Summer Meeting in Helsinki, pp. 191–209. Association for Symbolic Logic (1993)
Rahli, V., Bickford, M.: A nominal exploration of intuitionism. In: Proceedings of the 5th ACM SIGPLAN Conference on Certified Programs and Proofs, CPP, pp. 130–141, p. 2016. New York (2016)
Rahli, V., Bickford, M.: Validating Brouwer’s continuity principle for numbers using named exceptions. Math. Struct. Comput. Sci. 28(6), 942–990 (2018)
Rahli, V., Bickford, M., Cohen, L., Constable, R.L.: Bar induction is compatible with constructive type theory. J. ACM 66(2), 13:1–13:35 (2019)
Rahli, V., Bickford, M., Constable, R. L.: Bar induction: The Good, the Bad, and the Ugly. In: 2017 32nd Annual ACM/IEEE Symposium on Logic in Computer Science (LICS), pp. 1–12 (2017)
Rahli, V., Cohen, L., Bickford, M.: A verified theorem prover backend supported by a monotonic library. In: Barthe, G., Sutcliffe, G., Veanes, M., (eds.) LPAR-22. 22nd International Conference on Logic for Programming, Artificial Intelligence and Reasoning, vol. 57 of EPiC Series in Computing, pp. 564–582 (2018)
Rathjen, M.: A note on bar induction in constructive set theory. Math. Logic Q. 52(3), 253–258 (2006)
Troelstra, A.S.: A note on non-extensional operations in connection with continuity and Recursiveness. Indagationes Mathematicae 39(5), 455–462 (1977)
Troelstra, A.S.: Choice Sequences: a Chapter of Intuitionistic Mathematics. Clarendon Press, Oxford (1977)
Troelstra, A.S.: Choice sequences and informal rigour. Synthese 62(2), 217–227 (1985)
Troelstra, A.S., van Dalen, D.: Constructivism in Mathematics, An Introduction, vol. I. II. North-Holland, Amsterdam (1988)
van Atten, M.: On Brouwer. Cengage Learning, Wadsworth Philosophers (2004)
van Atten, M., van Dalen, D.: Arguments for the continuity principle. Bull. Symbolic Logic 8(3), 329–347 (2002)
van Dalen, D.: An interpretation of intuitionistic analysis. Ann. Math. Logic 13(1), 1–43 (1978)
van Dalen, D.: L.E.J. Brouwer: Topologist, Intuitionist, Philosopher: How Mathematics is Rooted in Life. Springer, New York (2013) https://doi.org/10.1007/978-1-4471-4616-2
Veldman, W.: Understanding and using brouwer’s continuity principle. In: Schuster, P., Berger, U., Osswald, H. (eds.) Reuniting the Antipodes - Constructive and Nonstandard Views of the Continuum. Synthese Library (Studies in Epistemology, Logic, Methodology, and Philosophy of Science), vol. 306, pp. 285–302. Springer, Dordrecht (2001). https://doi.org/10.1007/978-94-015-9757-9_24
Veldman, W.: Some applications of brouwer’s thesis on bars. In: Atten, M., Boldini, P., Bourdeau, M., Heinzmann, G. (eds.) One Hundred Years of Intuitionism (1907–2007). Publications of the Henri Poincaré Archives, pp. 326–340. Berkhäuser, Berlin (2008) https://doi.org/10.1007/978-3-7643-8653-5_20
Acknowledgments
The author thanks Vincent Rahli, Robert Constable and Mark Bickford as the framework described in the paper is based on a joint ongoing work with them.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Cohen, L. (2021). Formally Computing with the Non-computable. In: De Mol, L., Weiermann, A., Manea, F., Fernández-Duque, D. (eds) Connecting with Computability. CiE 2021. Lecture Notes in Computer Science(), vol 12813. Springer, Cham. https://doi.org/10.1007/978-3-030-80049-9_12
Download citation
DOI: https://doi.org/10.1007/978-3-030-80049-9_12
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-80048-2
Online ISBN: 978-3-030-80049-9
eBook Packages: Computer ScienceComputer Science (R0)