Skip to main content

Formally Computing with the Non-computable

  • Conference paper
  • First Online:
Connecting with Computability (CiE 2021)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12813))

Included in the following conference series:

  • 758 Accesses

Abstract

Church–Turing computability, which is the standard notion of computation, is based on functions for which there is an effective method for constructing their values. However, intuitionistic mathematics, as conceived by Brouwer, extends the notion of effective algorithmic constructions by also admitting constructions corresponding to human experiences of mathematical truths, which are based on temporal intuitions. In particular, the key notion of infinitely proceeding sequences of freely chosen objects, known as free choice sequences, regards functions as being constructed over time. This paper describes how free choice sequences can be embedded in an implemented formal framework, namely the constructive type theory of the Nuprl proof assistant. Some broader implications of supporting such an extended notion of computability in a formal system are then discussed, focusing on formal verification and constructive mathematics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Variants of bar induction were shown to be compatible with constructive type theory, and used to enhance the logical functionality implemented by proof assistants [29, 32].

  2. 2.

    For simplicity, throughout this paper we focus on choice sequences of natural numbers.

  3. 3.

    For a survey of the status of Church Thesis in type-theory-based proof assistants see [20].

  4. 4.

    The extended framework described was formalized in Coq’s formalization of Nuprl’s constructive type theory [3, 27].

  5. 5.

    This simplified description omits many components of the system which are not relevant to the current paper.

  6. 6.

    See, e.g., [35, 37, 38] for discussions on the various types of restrictions.

  7. 7.

    Notable exceptions include, e.g., [36, 42].

References

  1. Agda wiki. http://wiki.portal.chalmers.se/agda/pmwiki.php

  2. Allen, S.F., et al.: Innovations in Computational Type Theory using Nuprl. J. Appl. Logic 4(4), 428–469 (2006)

    Article  MathSciNet  Google Scholar 

  3. Anand, A., Rahli, V.: Towards a formally verified proof assistant. In: Klein, G., Gamboa, R. (eds.) ITP 2014. LNCS, vol. 8558, pp. 27–44. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08970-6_3

    Chapter  Google Scholar 

  4. Avigad, J., Feferman, S.: Gödel’s functional (“Dialectica’’) interpretation. Handb. Proof Theor. 137, 337–405 (1998)

    Article  Google Scholar 

  5. Beth, E.W.: Semantic construction of intuitionistic logic. J. Symbolic Logic 22(4), 363–365 (1957)

    Article  Google Scholar 

  6. Bickford, M., Cohen, L., Constable, R.L., Rahli, V.: Computability beyond church-turing via choice sequences. In: Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2018, pp. 245–254 (2018)

    Google Scholar 

  7. Bickford, M., Cohen, L., Constable, R.L., Rahli, V.: Open Bar - a Brouwerian intuitionistic logic with a pinch of excluded middle. In: Baier, C., Goubault-Larrecq, J., (eds.), 29th EACSL Annual Conference on Computer Science Logic (CSL), vol. 183, LIPIcs, pp. 11:1–11:23 (2021)

    Google Scholar 

  8. Bishop, E., Bridges, D.: Constructive Analysis. GW, vol. 279. Springer, Heidelberg (1985). https://doi.org/10.1007/978-3-642-61667-9

    Book  MATH  Google Scholar 

  9. Bridges, D., Richman, F.: Varieties of Constructive Mathematics. London Mathematical Society Lecture Notes Series, Cambridge University Press (1987)

    Google Scholar 

  10. Bridges, D., Richman, F.: Varieties of Constructive Mathematics. Cambridge University Press, Cambridge (1988)

    MATH  Google Scholar 

  11. Brouwer, L.E.J.: Begründung der mengenlehre unabhängig vom logischen satz vom ausgeschlossen dritten. zweiter teil: Theorie der punkmengen. Koninklijke Nederlandse Akademie van Wetenschappen te Amsterdam 12(7), (1919). Reprinted in Brouwer, L.E.J., Collected Works, Volume I: Philosophy and Foundations of Mathematics, edited by Heyting, A., North-Holland Publishing Co., Amsterdam, pp. 191–221 (1975)

    Google Scholar 

  12. Brouwer, L.E.J.: From frege to Gödel: A Source Book in Mathematical Logic, 1879–1931, chapter On the Domains of Definition of Functions (1927)

    Google Scholar 

  13. Church, A.: An unsolvable problem of elementary number theory. Am. J. Math. 58(2), 345–363 (1936)

    Article  MathSciNet  Google Scholar 

  14. Constable, R.L. et al.: Implementing Mathematics with the Nuprl Proof Development System. Prentice-Hall Inc, Hoboken (1986)

    Google Scholar 

  15. Coquand, T., Mannaa, B.: The independence of markov’s principle in type theory. In: Kesner, D., Pientka, B., (eds.) FSCD 2016, vol. 52 of LIPIcs, pp. 17:1–17:18. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2016)

    Google Scholar 

  16. Coquand, T., Mannaa, B., Ruch, F.: Stack semantics of type theory. In: 2017 32nd Annual ACM/IEEE Symposium on Logic in Computer Science (LICS), pp. 1–11 (2017)

    Google Scholar 

  17. The Coq Proof Assistant. http://coq.inria.fr/

  18. Dyson, V.H., Kreisel, G.: Analysis of Beth’s Semantic Construction of Intuitionistic Logic. Stanford University (1961)

    Google Scholar 

  19. Escardó, M.H., Xu, C.: The inconsistency of a Brouwerian continuity principle with the curry-howard interpretation. In: 13th International Conference on Typed Lambda Calculi and Applications (TLCA), pp. 153–164 (2015)

    Google Scholar 

  20. Forster, Y.: Church’s thesis and related axioms in Coq’s type theory. In: Baier, C., Goubault-Larrecq, J., (eds.) 29th EACSL Annual Conference on Computer Science Logic (CSL 2021), vol. 183 of Leibniz International Proceedings in Informatics (LIPIcs), pp. 21:1–21:19, Dagstuhl, Germany (2021). Schloss Dagstuhl-Leibniz-Zentrum für Informatik

    Google Scholar 

  21. Kleene, S.C., Vesley, R.E.: The Foundations of Intuitionistic Mathematics, Especially in Relation to Recursive Functions. North-Holland Publishing Company, Amsterdam (1965)

    Google Scholar 

  22. Kreisel, G.: On weak completeness of intuitionistic predicate logic. J. Symb. Log. 27(2), 139–158 (1962)

    Article  MathSciNet  Google Scholar 

  23. Kreisel, G.: Lawless sequences of natural numbers. Compositio Mathematica 20, 222–248 (1968)

    MathSciNet  MATH  Google Scholar 

  24. Kripke, S.A.: Semantical considerations on modal logic. Acta Philosophica Fennica 16(1963), 83–94 (1963)

    MathSciNet  MATH  Google Scholar 

  25. Martin-Löf, P.: Constructive mathematics and computer programming. In: Proceedings of the Sixth International Congress for Logic, Methodology, and Philosophy of Science, pp. 153–175. Amsterdam, North Holland (1982)

    Google Scholar 

  26. Moschovakis, J.R.: An intuitionistic theory of lawlike, choice and lawless sequences. In: Logic Colloquium’90: ASL Summer Meeting in Helsinki, pp. 191–209. Association for Symbolic Logic (1993)

    Google Scholar 

  27. Rahli, V., Bickford, M.: A nominal exploration of intuitionism. In: Proceedings of the 5th ACM SIGPLAN Conference on Certified Programs and Proofs, CPP, pp. 130–141, p. 2016. New York (2016)

    Google Scholar 

  28. Rahli, V., Bickford, M.: Validating Brouwer’s continuity principle for numbers using named exceptions. Math. Struct. Comput. Sci. 28(6), 942–990 (2018)

    Article  MathSciNet  Google Scholar 

  29. Rahli, V., Bickford, M., Cohen, L., Constable, R.L.: Bar induction is compatible with constructive type theory. J. ACM 66(2), 13:1–13:35 (2019)

    Google Scholar 

  30. Rahli, V., Bickford, M., Constable, R. L.: Bar induction: The Good, the Bad, and the Ugly. In: 2017 32nd Annual ACM/IEEE Symposium on Logic in Computer Science (LICS), pp. 1–12 (2017)

    Google Scholar 

  31. Rahli, V., Cohen, L., Bickford, M.: A verified theorem prover backend supported by a monotonic library. In: Barthe, G., Sutcliffe, G., Veanes, M., (eds.) LPAR-22. 22nd International Conference on Logic for Programming, Artificial Intelligence and Reasoning, vol. 57 of EPiC Series in Computing, pp. 564–582 (2018)

    Google Scholar 

  32. Rathjen, M.: A note on bar induction in constructive set theory. Math. Logic Q. 52(3), 253–258 (2006)

    Article  MathSciNet  Google Scholar 

  33. Troelstra, A.S.: A note on non-extensional operations in connection with continuity and Recursiveness. Indagationes Mathematicae 39(5), 455–462 (1977)

    Article  MathSciNet  Google Scholar 

  34. Troelstra, A.S.: Choice Sequences: a Chapter of Intuitionistic Mathematics. Clarendon Press, Oxford (1977)

    MATH  Google Scholar 

  35. Troelstra, A.S.: Choice sequences and informal rigour. Synthese 62(2), 217–227 (1985)

    Article  MathSciNet  Google Scholar 

  36. Troelstra, A.S., van Dalen, D.: Constructivism in Mathematics, An Introduction, vol. I. II. North-Holland, Amsterdam (1988)

    Google Scholar 

  37. van Atten, M.: On Brouwer. Cengage Learning, Wadsworth Philosophers (2004)

    MATH  Google Scholar 

  38. van Atten, M., van Dalen, D.: Arguments for the continuity principle. Bull. Symbolic Logic 8(3), 329–347 (2002)

    Article  MathSciNet  Google Scholar 

  39. van Dalen, D.: An interpretation of intuitionistic analysis. Ann. Math. Logic 13(1), 1–43 (1978)

    Article  MathSciNet  Google Scholar 

  40. van Dalen, D.: L.E.J. Brouwer: Topologist, Intuitionist, Philosopher: How Mathematics is Rooted in Life. Springer, New York (2013) https://doi.org/10.1007/978-1-4471-4616-2

  41. Veldman, W.: Understanding and using brouwer’s continuity principle. In: Schuster, P., Berger, U., Osswald, H. (eds.) Reuniting the Antipodes - Constructive and Nonstandard Views of the Continuum. Synthese Library (Studies in Epistemology, Logic, Methodology, and Philosophy of Science), vol. 306, pp. 285–302. Springer, Dordrecht (2001). https://doi.org/10.1007/978-94-015-9757-9_24

  42. Veldman, W.: Some applications of brouwer’s thesis on bars. In: Atten, M., Boldini, P., Bourdeau, M., Heinzmann, G. (eds.) One Hundred Years of Intuitionism (1907–2007). Publications of the Henri Poincaré Archives, pp. 326–340. Berkhäuser, Berlin (2008) https://doi.org/10.1007/978-3-7643-8653-5_20

Download references

Acknowledgments

The author thanks Vincent Rahli, Robert Constable and Mark Bickford as the framework described in the paper is based on a joint ongoing work with them.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liron Cohen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cohen, L. (2021). Formally Computing with the Non-computable. In: De Mol, L., Weiermann, A., Manea, F., Fernández-Duque, D. (eds) Connecting with Computability. CiE 2021. Lecture Notes in Computer Science(), vol 12813. Springer, Cham. https://doi.org/10.1007/978-3-030-80049-9_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-80049-9_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-80048-2

  • Online ISBN: 978-3-030-80049-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics