Skip to main content

Risk Factors Affecting Puberty: Environment, Obesity, and Lifestyles

  • Chapter
  • First Online:
Pediatric and Adolescent Andrology

Abstract

Puberty is a crucial developmental stage marked by the gradual transition from childhood to adulthood, initiated by the activation of the hypothalamus–pituitary–gonadal axis, and gonadal stimulation by rising levels of gonadotropins in response to an increased pulsatility of hypothalamic gonadotropin-releasing hormone, terminating with attainment of sexual maturity and accompanied by growth spurt, changes in physical aspect and behavior, and appearance of secondary sexual characteristics. Interconnections between genetic, endocrine, environmental, lifestyle-related and nutritional cues are involved in the complex control of the normal onset and/or progression of puberty; nevertheless, although risk factors of aberrant pubertal development have been widely investigated in girls, studies in boys are scarce. Sparse and uncertain associations between prenatal to adolescent exposure to polychlorinated biphenyls, dioxin and dioxin-like compounds, phthalates, bisphenol A, pesticides and lead and delayed genital and pubertal development have been provided, but no definitive causal inferences may be drawn at present. An equivocal relationship of obesity with pubertal timing has been reported in boys, partly explained by the paucity of studies and methodological drawbacks, as well as by contrasting actions on the hypothalamus–pituitary–gonadal axis exerted by hormonal changes occurring in obesity. Indeed, despite a beneficial effect of physiological increase of leptin levels on pubertal onset, obesity-induced leptin resistance at the hypothalamic–pituitary level determines central inhibition of the hypothalamus–pituitary–gonadal axis; moreover obesity-related hyperleptinemia might directly inhibit testicular steroidogenesis therefore potentially further delaying pubertal progression. On the other hand, reduced adiponectin levels might favor earlier pubertal onset and/or accelerate pubertal progression. Although increased adrenal androgens might accelerate the androgenic manifestations of puberty irrespective of the activation of the hypothalamus-pituitary-gonadal axis, excessive obesity-induced greater peripheral conversion of adrenal androgens to estrogens after pubertal onset might result in the inhibition of hypothalamus–pituitary–gonadal axis and delayed pubertal completion. Defective growth hormone-insulin-like growth factor 1 system signaling might also be called into question with a potential role of increased insulin-like growth factor 1 in anticipating pubertal onset and progression. A tendency to an earlier or a delayed onset of puberty has been associated with maternal cigarette smoking and alcohol consumption during pregnancy, in line with evidence suggesting delayed appearance of pubertal signs in boys consuming alcohol in pre-pubertal stage. Lastly, very scant evidence seems to suggest an association of higher animal protein dietary intake with earlier puberty in boys, whereas a potential malnutrition-related and negative energy balance-related delay in pubertal development might be speculated, based on evidence from girls suffering from anorexia nervosa or practicing vigorous physical activity, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Marshall WA, Tanner JM. Variations in the pattern of pubertal changes in boys. Arch Dis Child. 1970;45(239):13–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Alotaibi MF. Physiology of puberty in boys and girls and pathological disorders affecting its onset. J Adolesc. 2019;71:63–71.

    Article  PubMed  Google Scholar 

  3. Wood CL, Lane LC, Cheetham T. Puberty: normal physiology (brief overview). Best Pract Res Clin Endocrinol Metab. 2019;33(3):101265.

    Article  CAS  PubMed  Google Scholar 

  4. Stamatiades GA, Kaiser UB. Gonadotropin regulation by pulsatile GnRH: signaling and gene expression. Mol Cell Endocrinol. 2018;463:131–41.

    Article  CAS  PubMed  Google Scholar 

  5. Russell NG, Grossmann M. Estradiol as a male hormone. Eur J Endocrinol. 2019;181:R23–43.

    Article  CAS  PubMed  Google Scholar 

  6. Weinbauer GF, Luetjens CM, Simoni M, Nieschlag E. Physiology of testicular function. Berlin: Springer-Verlag; 2010.

    Book  Google Scholar 

  7. Meachem SJ, Nieschlag E, Simoni M. Inhibin B in male reproduction: pathophysiology and clinical relevance. Eur J Endocrinol. 2001;145(5):561–71.

    Article  CAS  PubMed  Google Scholar 

  8. Wijayarathna R, de Kretser DM. Activins in reproductive biology and beyond. Hum Reprod Update. 2016;22(3):342–57.

    Article  CAS  PubMed  Google Scholar 

  9. Pierik FH, Burdorf A, de Jong FH, Weber RF. Inhibin B: a novel marker of spermatogenesis. Ann Med. 2003;35(1):12–20.

    Article  CAS  PubMed  Google Scholar 

  10. O’Connor AE, De Kretser DM. Inhibins in normal male physiology. Semin Reprod Med. 2004;22(3):177–85.

    Article  PubMed  Google Scholar 

  11. Bloise E, Ciarmela P, Dela Cruz C, Luisi S, Petraglia F, Reis FM. Activin A in mammalian physiology. Physiol Rev. 2019;99(1):739–80.

    Article  CAS  PubMed  Google Scholar 

  12. Bilezikjian LM, Blount AL, Leal AM, Donaldson CJ, Fischer WH, Vale WW. Autocrine/paracrine regulation of pituitary function by activin, inhibin and follistatin. Mol Cell Endocrinol. 2004;225(1–2):29–36.

    Article  CAS  PubMed  Google Scholar 

  13. Bilezikjian LM, Blount AL, Corrigan AZ, Leal A, Chen Y, Vale WW. Actions of activins, inhibins and follistatins: implications in anterior pituitary function. Clin Exp Pharmacol Physiol. 2001;28(3):244–8.

    Google Scholar 

  14. Ivell R, Heng K, Anand-Ivell R. Insulin-like factor 3 and the HPG axis in the male. Front Endocrinol. 2014;5:6.

    Article  Google Scholar 

  15. Kuiri-Hanninen T, Sankilampi U, Dunkel L. Activation of the hypothalamic-pituitary-gonadal axis in infancy: minipuberty. Horm Res Paediatr. 2014;82(2):73–80.

    Article  PubMed  CAS  Google Scholar 

  16. Lee MJ, Yang GE, Chueh HW, Park JH, Yoo JH. The effect of first nocturnal ejaculation timing on risk and sexual behaviors of Korean male adolescents. Ann Pediatr Endocrinol Metab. 2017;22(1):43–8.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Marshall WA, Tanner JM. Variations in pattern of pubertal changes in girls. Arch Dis Child. 1969;44(235):291–303.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Emmanuel M, Bokor BR. Tanner stages. Treasure Island (FL): StatPearls; 2021.

    Google Scholar 

  19. Koskenniemi JJ, Virtanen HE, Toppari J. Testicular growth and development in puberty. Curr Opin Endocrinol Diabetes Obes. 2017;24(3):215–24.

    Article  CAS  PubMed  Google Scholar 

  20. Aksglaede L, Sorensen K, Boas M, Mouritsen A, Hagen CP, Jensen RB, et al. Changes in anti-Mullerian hormone (AMH) throughout the life span: a population-based study of 1027 healthy males from birth (cord blood) to the age of 69 years. J Clin Endocrinol Metab. 2010;95(12):5357–64.

    Article  CAS  PubMed  Google Scholar 

  21. Andersson AM, Juul A, Petersen JH, Muller J, Groome NP, Skakkebaek NE. Serum inhibin B in healthy pubertal and adolescent boys: relation to age, stage of puberty, and follicle-stimulating hormone, luteinizing hormone, testosterone, and estradiol levels. J Clin Endocrinol Metab. 1997;82(12):3976–81.

    CAS  PubMed  Google Scholar 

  22. Johansen ML, Anand-Ivell R, Mouritsen A, Hagen CP, Mieritz MG, Soeborg T, et al. Serum levels of insulin-like factor 3, anti-Mullerian hormone, inhibin B, and testosterone during pubertal transition in healthy boys: a longitudinal pilot study. Reproduction. 2014;147(4):529–35.

    Article  CAS  PubMed  Google Scholar 

  23. Mouritsen A, Aksglaede L, Soerensen K, Hagen CP, Petersen JH, Main KM, et al. The pubertal transition in 179 healthy Danish children: associations between pubarche, adrenarche, gonadarche, and body composition. Eur J Endocrinol. 2013;168(2):129–36.

    Article  CAS  PubMed  Google Scholar 

  24. Tenuta M, Carlomagno F, Cangiano B, Kanakis G, Pozza C, Sbardella E, et al. Somatotropic-testicular Axis: a crosstalk between GH/IGF-I and gonadal hormones during development, transition, and adult age. Andrology. 2021;9(1):168–84.

    Article  CAS  PubMed  Google Scholar 

  25. Topaloglu AK, Kotan LD. Genetics of hypogonadotropic hypogonadism. Endocr Dev. 2016;29:36–49.

    Article  CAS  PubMed  Google Scholar 

  26. Ge X, Brody GH, Conger RD, Simons RL, Murry VM. Contextual amplification of pubertal transition effects on deviant peer affiliation and externalizing behavior among African American children. Dev Psychol. 2002;38(1):42–54.

    Article  PubMed  Google Scholar 

  27. Parent AS, Franssen D, Fudvoye J, Pinson A, Bourguignon JP. Current changes in pubertal timing: revised vision in relation with environmental factors including endocrine disruptors. Endocr Dev. 2016;29:174–84.

    Article  CAS  PubMed  Google Scholar 

  28. Barker DJ. The fetal and infant origins of adult disease. BMJ. 1990;301(6761):1111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Barker DJ. The developmental origins of adult disease. J Am Coll Nutr. 2004;23(6 Suppl):588S–95S.

    Article  CAS  PubMed  Google Scholar 

  30. Fudvoye J, Lopez-Rodriguez D, Franssen D, Parent AS. Endocrine disrupters and possible contribution to pubertal changes. Best Pract Res Clin Endocrinol Metab. 2019;33(3):101300.

    Article  CAS  PubMed  Google Scholar 

  31. Guo YL, Lambert GH, Hsu CC, Hsu MM. Yucheng: health effects of prenatal exposure to polychlorinated biphenyls and dibenzofurans. Int Arch Occup Environ Health. 2004;77(3):153–8.

    Article  CAS  PubMed  Google Scholar 

  32. Guo YL, Lai TJ, Ju SH, Chen YC, Hsu CC. Sexual developments and biological findings in Yucheng children. Thirteenth International Symposium on Chlorinated Dioxins and Related Compounds, 24–28 September 1993. Vienna, Austria; 1993.

    Google Scholar 

  33. Den Hond E, Roels HA, Hoppenbrouwers K, Nawrot T, Thijs L, Vandermeulen C, et al. Sexual maturation in relation to polychlorinated aromatic hydrocarbons: Sharpe and Skakkebaek’s hypothesis revisited. Environ Health Perspect. 2002;110(8):771–6.

    Article  Google Scholar 

  34. Leijs MM, Koppe JG, Olie K, van Aalderen WM, Voogt P, Vulsma T, et al. Delayed initiation of breast development in girls with higher prenatal dioxin exposure; a longitudinal cohort study. Chemosphere. 2008;73(6):999–1004.

    Article  CAS  PubMed  Google Scholar 

  35. Mol NM, Sorensen N, Weihe P, Andersson AM, Jorgensen N, Skakkebaek NE, et al. Spermaturia and serum hormone concentrations at the age of puberty in boys prenatally exposed to polychlorinated biphenyls. Eur J Endocrinol. 2002;146(3):357–63.

    Article  CAS  PubMed  Google Scholar 

  36. Gladen BC, Ragan NB, Rogan WJ. Pubertal growth and development and prenatal and lactational exposure to polychlorinated biphenyls and dichlorodiphenyl dichloroethene. J Pediatr. 2000;136(4):490–6.

    Article  CAS  PubMed  Google Scholar 

  37. Dickerson SM, Guevara E, Woller MJ, Gore AC. Cell death mechanisms in GT1-7 GnRH cells exposed to polychlorinated biphenyls PCB74, PCB118, and PCB153. Toxicol Appl Pharmacol. 2009;237(2):237–45.

    Google Scholar 

  38. Gore AC, Wu TJ, Oung T, Lee JB, Woller MJ. A novel mechanism for endocrine-disrupting effects of polychlorinated biphenyls: direct effects on gonadotropin-releasing hormone neurones. J Neuroendocrinol. 2002;14(10):814–23.

    Google Scholar 

  39. Muthuvel R, Venkataraman P, Krishnamoorthy G, Gunadharini DN, Kanagaraj P, Jone Stanley A, et al. Antioxidant effect of ascorbic acid on PCB (Aroclor 1254) induced oxidative stress in hypothalamus of albino rats. Clinica Chimica Acta. 2006;365(1–2):297–303.

    Google Scholar 

  40. Murugesan P, Muthusamy T, Balasubramanian K, Arunakaran J. Studies on the protective role of vitamin C and E against polychlorinated biphenyl (Aroclor 1254)–induced oxidative damage in Leydig cells. Free Radic Res. 2005;39(11):1259–72.

    Google Scholar 

  41. Matti Viluksela, Päivi Heikkinen, Leo T. M. van der Ven, Filip Rendel, Robert Roos, Javier Esteban, et al. Toxicological profile of ultrapure 2,2′,3,4,4′,5,5′-heptachlorbiphenyl (PCB 180) in adult rats. PLoS ONE 2014;9 (8):e104639.

    Google Scholar 

  42. Ferguson KK, Peterson KE, Lee JM, Mercado-Garcia A, Blank-Goldenberg C, Tellez-Rojo MM, et al. Prenatal and peripubertal phthalates and bisphenol A in relation to sex hormones and puberty in boys. Reprod Toxicol. 2014;47:70–6.

    Article  CAS  PubMed  Google Scholar 

  43. Sathyanarayana S, Beard L, Zhou C, Grady R. Measurement and correlates of ano-genital distance in healthy, newborn infants. Int J Androl. 2010;33(2):317–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Miao M, Yuan W, He Y, Zhou Z, Wang J, Gao E, et al. In utero exposure to bisphenol-A and anogenital distance of male offspring. Birth Defects Res A Clin Mol Teratol. 2011;91(10):867–72.

    Article  CAS  PubMed  Google Scholar 

  45. Durmaz E, Ozmert EN, Erkekoglu P, Giray B, Derman O, Hincal F, et al. Plasma phthalate levels in pubertal gynecomastia. Pediatrics. 2010;125(1):e122–9.

    Article  PubMed  Google Scholar 

  46. Manikkam M, Tracey R, Guerrero-Bosagna C, Skinner MK. Plastics derived endocrine disruptors (BPA, DEHP and DBP) induce epigenetic transgenerational inheritance of obesity, reproductive disease and sperm epimutations. PLoS One. 2013;8(1):e55387.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Sergeyev O, Burns JS, Williams PL, Korrick SA, Lee MM, Revich B, et al. The association of peripubertal serum concentrations of organochlorine chemicals and blood lead with growth and pubertal development in a longitudinal cohort of boys: a review of published results from the Russian Children’s Study. Rev Environ Health. 2017;32(1–2):83–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Saiyed H, Dewan A, Bhatnagar V, Shenoy U, Shenoy R, Rajmohan H, et al. Effect of endosulfan on male reproductive development. Environ Health Perspect. 2003;111(16):1958–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Gladen BC, Klebanoff MA, Hediger ML, Katz SH, Barr DB, Davis MD, et al. Prenatal DDT exposure in relation to anthropometric and pubertal measures in adolescent males. Environ Health Perspect. 2004;112(17):1761–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Andrea C Gore. Organochlorine pesticides directly regulate gonadotropin-releasing hormone gene expression and biosynthesis in the GT1-7 hypothalamic cell line. Mol Cell Endocrinol. 2002;192(1–2):157–70.

    Google Scholar 

  51. Leon-Olea M, Martyniuk CJ, Orlando EF, Ottinger MA, Rosenfeld C, Wolstenholme J, et al. Current concepts in neuroendocrine disruption. Gen Comp Endocrinol. 2014;203:158–73.

    Google Scholar 

  52. Castellanos CG, Sorvik IB, Tanum MB, Verhaegen S, Brandt I, Ropstad E. Differential effects of the persistent DDT metabolite methylsulfonyl-DDE in nonstimulated and LH stimulated neonatal porcine Leydig cells. Toxicol Appl Pharmacol. 2013;267(3):247–55.

    Google Scholar 

  53. Geng X, Shao H, Zhang Z, Ng JC, Peng C. Malathion-induced testicular toxicity is associated with spermatogenic apoptosis and alterations in testicular enzymes and hormone levels in male Wistar rats. Environ Toxicol Pharmacol. 2015;39(2):659–67.

    Google Scholar 

  54. Wang N, Xu Y, Zhou XQ, Wu YH, Li SL, Qiao X, et al. Protective effects of testosterone propionate on reproductive toxicity caused by Endosulfan in male mice. Environ Toxicol. 2016;31(2):142–53.

    Google Scholar 

  55. World Health Organization. WHO fact sheet No 311. Obesity and overweight; 2018.

    Google Scholar 

  56. Saboor Aftab SA, Kumar S, Barber TM. The role of obesity and type 2 diabetes mellitus in the development of male obesity-associated secondary hypogonadism. Clin Endocrinol. 2013;78(3):330–7.

    Article  CAS  Google Scholar 

  57. Bellastella G, Menafra D, Puliani G, Colao A, Savastano S, Obesity Programs of nutrition, Education, Research and Assessment (OPERA) Group. How much does obesity affect the male reproductive function? Int J Obes Suppl. 2019;9(1):50–64.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Bhasin S, Brito JP, Cunningham GR, Hayes FJ, Hodis HN, Matsumoto AM, et al. Testosterone therapy in men with hypogonadism: an endocrine society clinical practice guideline. J Clin Endocrinol Metab. 2018;103(5):1715–44.

    Article  PubMed  Google Scholar 

  59. Kelly DM, Jones TH. Testosterone and obesity. Obes Rev. 2015;16(7):581–606.

    Article  CAS  PubMed  Google Scholar 

  60. Pivonello R, Menafra D, Riccio E, Garifalos F, Mazzella M, de Angelis C, et al. Metabolic disorders and male hypogonadotropic hypogonadism. Front Endocrinol. 2019;10:345.

    Article  Google Scholar 

  61. Isidori AM, Giannetta E, Greco EA, Gianfrilli D, Bonifacio V, Isidori A, et al. Effects of testosterone on body composition, bone metabolism and serum lipid profile in middle-aged men: a meta-analysis. Clin Endocrinol. 2005;63(3):280–93.

    Article  CAS  Google Scholar 

  62. Reinehr T, Roth CL. Is there a causal relationship between obesity and puberty? Lancet Child Adolesc Health. 2019;3(1):44–54.

    Article  PubMed  Google Scholar 

  63. Amstalden M, Alves BR, Liu S, Cardoso RC, Williams GL. Neuroendocrine pathways mediating nutritional acceleration of puberty: insights from ruminant models. Front Endocrinol. 2011;2:109.

    Article  Google Scholar 

  64. Vazquez MJ, Velasco I, Tena-Sempere M. Novel mechanisms for the metabolic control of puberty: implications for pubertal alterations in early-onset obesity and malnutrition. J Endocrinol. 2019;242(2):R51–65.

    Article  CAS  PubMed  Google Scholar 

  65. Izquierdo AG, Crujeiras AB, Casanueva FF, Carreira MC. Leptin, obesity, and leptin resistance: where are we 25 years later? Nutrients. 2019;11(11):2704.

    Article  CAS  PubMed Central  Google Scholar 

  66. Kwon O, Kim KW, Kim MS. Leptin signalling pathways in hypothalamic neurons. Cell Mol Life Sci. 2016;73(7):1457–77.

    Article  CAS  PubMed  Google Scholar 

  67. Caprio M, Isidori AM, Carta AR, Moretti C, Dufau ML, Fabbri A. Expression of functional leptin receptors in rodent Leydig cells. Endocrinology. 1999;140(11):4939–47.

    Article  CAS  PubMed  Google Scholar 

  68. Ishikawa T, Fujioka H, Ishimura T, Takenaka A, Fujisawa M. Expression of leptin and leptin receptor in the testis of fertile and infertile patients. Andrologia. 2007;39(1):22–7.

    Article  CAS  PubMed  Google Scholar 

  69. Isidori AM, Caprio M, Strollo F, Moretti C, Frajese G, Isidori A, et al. Leptin and androgens in male obesity: evidence for leptin contribution to reduced androgen levels. J Clin Endocrinol Metab. 1999;84(10):3673–80.

    CAS  PubMed  Google Scholar 

  70. Kiess W, Reich A, Meyer K, Glasow A, Deutscher J, Klammt J, et al. A role for leptin in sexual maturation and puberty? Horm Res. 1999;51(Suppl 3):55–63.

    CAS  PubMed  Google Scholar 

  71. Xi H, Zhang L, Guo Z, Zhao L. Serum leptin concentration and its effect on puberty in Naqu Tibetan adolescents. J Physiol Anthropol. 2011;30(3):111–7.

    Article  PubMed  Google Scholar 

  72. Klein DA, Emerick JE, Sylvester JE, Vogt KS. Disorders of puberty: an approach to diagnosis and management. Am Fam Physician. 2017;96(9):590–9.

    PubMed  Google Scholar 

  73. Vandewalle S, Taes Y, Fiers T, Van Helvoirt M, Debode P, Herregods N, et al. Sex steroids in relation to sexual and skeletal maturation in obese male adolescents. J Clin Endocrinol Metab. 2014;99(8):2977–85.

    Article  CAS  PubMed  Google Scholar 

  74. Cao B, Gong C, Wu D, Liang X, Li W, Liu M, et al. A cross-sectional survey of adrenal steroid hormones among overweight/obese boys according to puberty stage. BMC pediatrics. 2019;19(1):414.

    Google Scholar 

  75. Santos-Silva R, Costa C, Castro-Correia C, Fontoura M. Clinical, biochemical and gender characteristics of 97 prepubertal children with premature adrenarche. J Pediatr Endocrinol Metab. 2019;32(11):1247–52.

    Google Scholar 

  76. Findling JW, Raff H. Diagnosis of endocrine disease: differentiation of pathologic/neoplastic hypercortisolism (Cushing’s syndrome) from physiologic/non-neoplastic hypercortisolism (formerly known as pseudo-Cushing’s syndrome). Eur J Endocrinol. 2017;176(5):R205–R16.

    Article  CAS  PubMed  Google Scholar 

  77. Scaroni C, Albiger NM, Palmieri S, Iacuaniello D, Graziadio C, Damiani L, et al. Approach to patients with pseudo-Cushing’s states. Endocr Connect. 2020;9(1):R1–R13.

    Article  PubMed  Google Scholar 

  78. Biason-Lauber A, Zachmann M, Schoenle EJ. Effect of leptin on CYP17 enzymatic activities in human adrenal cells: new insight in the onset of adrenarche. Endocrinology. 2000;141(4):1446–54.

    Article  CAS  PubMed  Google Scholar 

  79. Vandewalle S, De Schepper J, Kaufman JM. Androgens and obesity in male adolescents. Curr Opin Endocrinol Diabetes Obes. 2015;22(3):230–7.

    Article  CAS  PubMed  Google Scholar 

  80. Reinehr T, Kulle A, Wolters B, Lass N, Welzel M, Riepe F, et al. Steroid hormone profiles in prepubertal obese children before and after weight loss. J Clin Endocrinol Metab. 2013;98(6):E1022–30.

    Article  CAS  PubMed  Google Scholar 

  81. Remer T, Shi L, Buyken AE, Maser-Gluth C, Hartmann MF, Wudy SA. Prepubertal adrenarchal androgens and animal protein intake independently and differentially influence pubertal timing. J Clin Endocrinol Metab. 2010;95(6):3002–9.

    Google Scholar 

  82. Albin AK, Ankarberg-Lindgren C, Tuvemo T, Jonsson B, Albertsson-Wikland K, Ritzen EM, et al. Does growth hormone treatment influence pubertal development in short children? Horm Res Paediatr. 2011;76(4):262–72.

    Google Scholar 

  83. Laron Z, Klinger B. Effect of insulin-like growth factor-I treatment on serum androgens and testicular and penile size in males with Laron syndrome (primary growth hormone resistance). Eur J Endocrinol. 1998;138(2):176–80.

    Article  CAS  PubMed  Google Scholar 

  84. Hindmarsh PC, Brook CG. Final height of short normal children treated with growth hormone. Lancet. 1996;348(9019):13–6.

    Article  CAS  PubMed  Google Scholar 

  85. Rekers-Mombarg LT, Kamp GA, Massa GG, Wit JM. Influence of growth hormone treatment on pubertal timing and pubertal growth in children with idiopathic short stature. Dutch Growth Hormone Working Group. J Pediatr Endocrinol Metab. 1999;12(5):611–22.

    Article  CAS  PubMed  Google Scholar 

  86. Marcovecchio ML, Chiarelli F. Obesity and growth during childhood and puberty. World Rev Nutr Diet. 2013;106:135–41.

    Article  PubMed  Google Scholar 

  87. Bouhours-Nouet N, Gatelais F, Boux de Casson F, Rouleau S, Coutant R. The insulin-like growth factor-I response to growth hormone is increased in prepubertal children with obesity and tall stature. J Clin Endocrinol Metab. 2007;92(2):629–35.

    Google Scholar 

  88. Kratzsch J, Dehmel B, Pulzer F, Keller E, Englaro P, Blum WF, et al. Increased serum GHBP levels in obese pubertal children and adolescents: relationship to body composition, leptin and indicators of metabolic disturbances. International journal of obesity and related metabolic disorders: journal of the international association for the study of obesity. 1997;21(12):1130–6.

    Google Scholar 

  89. Lee JM, Kaciroti N, Appugliese D, Corwyn RF, Bradley RH, Lumeng JC. Body mass index and timing of pubertal initiation in boys. Arch Pediatr Adolesc Med. 2010;164(2):139–44.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Lee JM, Wasserman R, Kaciroti N, Gebremariam A, Steffes J, Dowshen S, et al. Timing of puberty in overweight versus obese boys. Pediatrics. 2016;137(2):e20150164.

    Article  PubMed  Google Scholar 

  91. Lundeen EA, Norris SA, Martorell R, Suchdev PS, Mehta NK, Richter LM, et al. Early life growth predicts pubertal development in south African adolescents. J Nutr. 2016;146(3):622–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Wang Y. Is obesity associated with early sexual maturation? A comparison of the association in American boys versus girls. Pediatrics. 2002;110(5):903–10.

    Article  PubMed  Google Scholar 

  93. Boyne MS, Thame M, Osmond C, Fraser RA, Gabay L, Reid M, et al. Growth, body composition, and the onset of puberty: longitudinal observations in Afro-Caribbean children. J Clin Endocrinol Metab. 2010;95(7):3194–200.

    Article  CAS  PubMed  Google Scholar 

  94. De Leonibus C, Marcovecchio ML, Chiavaroli V, de Giorgis T, Chiarelli F, Mohn A. Timing of puberty and physical growth in obese children: a longitudinal study in boys and girls. Pediatr Obes. 2014;9(4):292–9.

    Article  PubMed  Google Scholar 

  95. He Q, Karlberg J. BMI in childhood and its association with height gain, timing of puberty, and final height. Pediatr Res. 2001;49(2):244–51.

    Article  CAS  PubMed  Google Scholar 

  96. Juul A, Magnusdottir S, Scheike T, Prytz S, Skakkebaek NE. Age at voice break in Danish boys: effects of pre-pubertal body mass index and secular trend. Int J Androl. 2007;30(6):537–42.

    Article  PubMed  Google Scholar 

  97. Monteilh C, Kieszak S, Flanders WD, Maisonet M, Rubin C, Holmes AK, et al. Timing of maturation and predictors of Tanner stage transitions in boys enrolled in a contemporary British cohort. Paediatr Perinat Epidemiol. 2011;25(1):75–87.

    Article  PubMed  Google Scholar 

  98. Busch AS, Hojgaard B, Hagen CP, Teilmann G. Obesity is associated with earlier pubertal onset in boys. J Clin Endocrinol Metab. 2020;105(4):dgz222.

    Article  PubMed  Google Scholar 

  99. Liu Y, Tingting Y, Li X, Pan D, Lai X, Chen Y, Wang X, Yu X, Fu S, Huang S, Lin C, Liu S. Prevalence of precocious puberty among Chinese children: a school population-based study. Endocrine. 2021;72:573–81.

    Article  CAS  PubMed  Google Scholar 

  100. Huang A, Reinehr T, Roth CL. Connections between obesity and puberty: invited by Manuel Tena-Sempere, Cordoba. Curr Opin Endocr Metab Res. 2020;14:160–8.

    Article  PubMed  PubMed Central  Google Scholar 

  101. Crocker MK, Stern EA, Sedaka NM, Shomaker LB, Brady SM, Ali AH, et al. Sexual dimorphisms in the associations of BMI and body fat with indices of pubertal development in girls and boys. J Clin Endocrinol Metab. 2014;99(8):E1519–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. de Angelis C, Nardone A, Garifalos F, Pivonello C, Sansone A, Conforti A, et al. Smoke, alcohol and drug addiction and female fertility. Reprod Biol Endocrinol. 2020;18(1):21.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Sansone A, Di Dato C, de Angelis C, Menafra D, Pozza C, Pivonello R, et al. Smoke, alcohol and drug addiction and male fertility. Reprod Biol Endocrinol. 2018;16(1):3.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  104. Jensen MS, Toft G, Thulstrup AM, Bonde JP, Olsen J. Cryptorchidism according to maternal gestational smoking. Epidemiology. 2007;18(2):220–5.

    Article  PubMed  Google Scholar 

  105. Hakonsen LB, Olsen J, Stovring H, Ernst A, Thulstrup AM, Zhu JL, et al. Maternal cigarette smoking during pregnancy and pubertal development in sons. A follow-up study of a birth cohort. Andrology. 2013;1(2):348–55.

    Article  CAS  PubMed  Google Scholar 

  106. Ravnborg TL, Jensen TK, Andersson AM, Toppari J, Skakkebaek NE, Jorgensen N. Prenatal and adult exposures to smoking are associated with adverse effects on reproductive hormones, semen quality, final height and body mass index. Hum Reprod. 2011;26(5):1000–11.

    Article  CAS  PubMed  Google Scholar 

  107. Brix N, Ernst A, Lauridsen LLB, Parner ET, Arah OA, Olsen J, et al. Maternal pre-pregnancy body mass index, smoking in pregnancy, and alcohol intake in pregnancy in relation to pubertal timing in the children. BMC Pediatr. 2019;19(1):338.

    Article  PubMed  PubMed Central  Google Scholar 

  108. Hakonsen LB, Brath-Lund ML, Hounsgaard ML, Olsen J, Ernst A, Thulstrup AM, et al. In utero exposure to alcohol and puberty in boys: a pregnancy cohort study. BMJ Open. 2014;4(6):e004467.

    Article  PubMed  PubMed Central  Google Scholar 

  109. Carter RC, Jacobson JL, Dodge NC, Granger DA, Jacobson SW. Effects of prenatal alcohol exposure on testosterone and pubertal development. Alcohol Clin Exp Res. 2014;38(6):1671–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Davis EM, Peck JD, Peck BM, Kaplan HB. Associations between early alcohol and tobacco use and prolonged time to puberty in boys. Child Care Health Dev. 2015;41(3):459–66.

    Article  CAS  PubMed  Google Scholar 

  111. de Water E, Braams BR, Crone EA, Peper JS. Pubertal maturation and sex steroids are related to alcohol use in adolescents. Horm Behav. 2013;63(2):392–7.

    Article  PubMed  CAS  Google Scholar 

  112. Gianfrilli D, Ferlin A, Isidori AM, Garolla A, Maggi M, Pivonello R, et al. Risk behaviours and alcohol in adolescence are negatively associated with testicular volume: results from the Amico-Andrologo survey. Andrology. 2019;7(6):769–77.

    Article  CAS  PubMed  Google Scholar 

  113. Kwok MK, Leung GM, Lam TH, Schooling CM. Breastfeeding, childhood milk consumption, and onset of puberty. Pediatrics. 2012;130(3):e631–9.

    Article  PubMed  Google Scholar 

  114. Cheng G, Buyken AE, Shi L, Karaolis-Danckert N, Kroke A, Wudy SA, et al. Beyond overweight: nutrition as an important lifestyle factor influencing timing of puberty. Nutr Rev. 2012;70(3):133–52.

    Article  PubMed  Google Scholar 

  115. McNicholas F, Dooley B, McNamara N, Lennon R. The impact of self-reported pubertal status and pubertal timing on disordered eating in Irish adolescents. Eur Eat Disord Rev. 2012;20(5):355–62.

    Article  PubMed  Google Scholar 

  116. Munoz-Calvo MT, Argente J. Nutritional and pubertal disorders. Endocr Dev. 2016;29:153–73.

    Article  PubMed  CAS  Google Scholar 

  117. Misra M, Katzman DK, Cord J, Manning SJ, Mendes N, Herzog DB, et al. Bone metabolism in adolescent boys with anorexia nervosa. J Clin Endocrinol Metab. 2008;93(8):3029–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Schorr M, Miller KK. The endocrine manifestations of anorexia nervosa: mechanisms and management. Nat Rev Endocrinol. 2017;13(3):174–86.

    Article  CAS  PubMed  Google Scholar 

  119. Munoz-Calvo MT. Anorexia nervosa: an endocrine focus and procedure guidelines. J Pediatr Endocrinol Metab. 2005;18(Suppl 1):1181–5.

    PubMed  Google Scholar 

  120. Munoz MT, de la Piedra C, Barrios V, Garrido G, Argente J. Changes in bone density and bone markers in rhythmic gymnasts and ballet dancers: implications for puberty and leptin levels. Eur J Endocrinol. 2004;151(4):491–6.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rosario Pivonello .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

de Angelis, C. et al. (2021). Risk Factors Affecting Puberty: Environment, Obesity, and Lifestyles. In: Foresta, C., Gianfrilli, D. (eds) Pediatric and Adolescent Andrology. Trends in Andrology and Sexual Medicine. Springer, Cham. https://doi.org/10.1007/978-3-030-80015-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-80015-4_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-80014-7

  • Online ISBN: 978-3-030-80015-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics