Skip to main content

Skyline Groups Are Ideals. An Efficient Algorithm for Enumerating Skyline Groups

  • 496 Accesses

Part of the Lecture Notes in Computer Science book series (LNTCS,volume 12757)

Abstract

Skyline queries are multicriteria queries that are of great interest for decision applications. Skyline Groups extend the idea of skyline to groups of objects. In the recent years, several algorithms have been proposed to extract, in an efficient way, the complete set of skyline groups. Due to the novelty of the skyline group concept, these algorithms use custom enumeration strategies. The first contribution of this paper is the observation that a skyline group corresponds to the notion of ideal of a partially ordered set. From this observation, our second contribution consists in proposing a novel and efficient algorithm for the enumeration of all ideals of a given size k (i.e. all skyline groups of size k) of a poset. This algorithm, called GenIdeals, has a time delay complexity of \(O(w^2)\), where w is the width of the poset, which improves the best known time output complexity for this problem: \(O(n^3)\) where n is the number of elements in the poset. This work present new theoretical results and applications on skyline queries.

Keywords

  • Skyline queries
  • Ideal enumeration
  • Time delay complexity

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-79987-8_16
  • Chapter length: 14 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   84.99
Price excludes VAT (USA)
  • ISBN: 978-3-030-79987-8
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   109.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.

References

  1. Abdo, M.: Efficient generation of the ideals of a poset in gray code order, part ii. Theor. Comput. Sci. 502, 30–45 (2013), generation of Combinatorial Structures

    Google Scholar 

  2. Chang, Y., Garg, V.K.: Quicklex: a fast algorithm for consistent global states enumeration of distributed computations. In: Anceaume, E., Cachin, C., Potop-Butucaru, M.G. (eds.) 19th International Conference on Principles of Distributed Systems, OPODIS 2015, December 14–17, 2015, Rennes, France. LIPIcs, vol. 46, pp. 25:1–25:17. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2015)

    Google Scholar 

  3. Chomicki, J., Ciaccia, P., Meneghetti, N.: Skyline queries, front and back. ACM SIGMOD Rec. 42(3), 6–18 (2013)

    CrossRef  Google Scholar 

  4. Habib, M., Medina, R., Nourine, L., Steiner, G.: Efficient algorithms on distributive lattices. Discrete Appl. Math. 110(2), 169–187 (2001)

    MathSciNet  CrossRef  Google Scholar 

  5. Habib, M., Nourine, L., Steiner, G.: Gray codes for the ideals of interval orders. J. Algorithms 25, 52–66 (1997)

    MathSciNet  CrossRef  Google Scholar 

  6. Im, H., Park, S.: Group skyline computation. Inf. Sci. 188, 151–169 (2012)

    MathSciNet  CrossRef  Google Scholar 

  7. Yang, Z., Xiao, G., Li, K., Li, K., et al.: Progressive approaches for pareto optimal groups computation. IEEE Trans. Knowl. Data Eng. 31(3), 521–534 (2018)

    Google Scholar 

  8. Liu, J., Xiong, L., Pei, J., Luo, J., Zhang, H.: Finding pareto optimal groups: group-based skyline. Proc. VLDB Endowment 8(13), 2086–2097 (2015)

    CrossRef  Google Scholar 

  9. Liu, J., Xiong, L., Pei, J., Luo, J., Zhang, H., Yu, W.: Group-based skyline for pareto optimal groups. IEEE Trans. Knowl. Data Eng. (2019)

    Google Scholar 

  10. Medina, R., Nourine, L.: Algorithme efficace de génération des ideaux d’un ensemble ordonné. C.R. Acad. Sci. Paris Sér. I Math. 319, 1115–1120 (1994)

    Google Scholar 

  11. Nakano, S., Uno, T.: Constant time generation of trees with specified diameter. In: Hromkovič, J., Nagl, M., Westfechtel, B. (eds.) WG 2004. LNCS, vol. 3353, pp. 33–45. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30559-0_3

    CrossRef  Google Scholar 

  12. Squire, M.: Enumerating the ideals of a poset. Preprint available electronically at (1995). http://citeseer.ist.psu.edu/465417.html

  13. Steiner, G.: An algorithm for generating the ideals of a partial order. Oper. Res. Lett. 5, 317–320 (1986)

    MathSciNet  CrossRef  Google Scholar 

  14. Uno, T.: Two general methods to reduce delay and change of enumeration algorithms. NII Technical report (2003)

    Google Scholar 

  15. Wang, C., Wang, C., Guo, G., Ye, X., Philip, S.Y.: Efficient computation of g-skyline groups. IEEE Trans. Knowl. Data Eng. 30(4), 674–688 (2017)

    CrossRef  Google Scholar 

  16. Wild, M.: Output-polynomial enumeration of all fixed-cardinality ideals of a poset, respectively all fixed-cardinality subtrees of a tree. Order 31(1), 121–135 (2014)

    MathSciNet  CrossRef  Google Scholar 

  17. Yang, Z., Zhou, X., Li, K., Xiao, G., Gao, Y., Li, K.: Efficient processing of top k group skyline queries. Knowl.-Based Syst. 182, 104795 (2019)

    Google Scholar 

  18. Zhang, N., Li, C., Hassan, N., Rajasekaran, S., Das, G.: On skyline groups. IEEE Trans. Knowl. Data Eng. 26(4), 942–956 (2013)

    CrossRef  Google Scholar 

  19. Zhou, X., Li, K., Yang, Z., Gao, Y., Li, K.: Efficient approaches to k representative g-skyline queries. ACM Trans. Knowl. Discov. Data (TKDD) 14(5), 1–27 (2020)

    CrossRef  Google Scholar 

Download references

Acknowledgments

The third author is supported by the French government IDEX ISITE initiative 16-IDEX-0001 (CAP 20–25).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tassadit Bouadi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Coumes, S., Bouadi, T., Nourine, L., Termier, A. (2021). Skyline Groups Are Ideals. An Efficient Algorithm for Enumerating Skyline Groups. In: Flocchini, P., Moura, L. (eds) Combinatorial Algorithms. IWOCA 2021. Lecture Notes in Computer Science(), vol 12757. Springer, Cham. https://doi.org/10.1007/978-3-030-79987-8_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-79987-8_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-79986-1

  • Online ISBN: 978-3-030-79987-8

  • eBook Packages: Computer ScienceComputer Science (R0)