Skip to main content

Wet Chemical Synthesis and Processing of Nanoferrites in Terms of Their Shape, Size and Physiochemical Properties

  • Chapter
  • First Online:
Spinel Nanoferrites

Abstract

Nanoferrites are found to showcase superior and substantially distinct properties due to the ease with which they can be synthesized and modified chemically. The nanoparticles are synthesized by various methods classified primarily into two categories: top-down and bottom-up methods. Wet chemical synthesis methods offer unlimited control over size distribution and shape of nanoparticles and provide the opportunity of scale-up for production of nanomaterials in bulks for practical application. This chapter covers sol-gel, solvothermal, co-precipitation, thermal decomposition and microwave-assisted methods for the production of nanoferrites. A variety of nanoferrites and its composites with remarkable properties can be synthesized by these methods mentioned in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tsay CY, Chiu YC, Lei CM (2018)  Hydrothermally synthesized Mg-based spinel nanoferrites: Phase formation and study on magnetic features and microwave characteristics.  Mater 11 2274

    Google Scholar 

  2. Dhand C, Dwivedi N, Loh XJ, Ying ANJ, Varma NK, Beuerman RW (2015) Methods and strategies for the synthesis of diverse nanoparticles and their applications: A comprehensive overview.  RSC Adv 5:105003

    Google Scholar 

  3. Jamkhande PG, Ghule NW, Bamer AH, Kalaskar MG (2019) Metal nanoparticles synthesis: An overview on methods of preparation, advantages and disadvantages, and applications.  J Drug Deliv Sci Technol 53:101174

    Google Scholar 

  4. Tan C, Zhang H (2015)Wet-chemical synthesis and applications of non-layer structured two-dimensional nanomaterials. Nat Commun 6:7873

    Article  CAS  Google Scholar 

  5. Nikam AV, Prasad BLV, Kulkarni AA (2018) CrystEngComm 20:5091–5107

    Google Scholar 

  6. Gatelyte A, Jasaitis D, Beganskiene A, Kareiva A (2011) Sol-gel synthesis and characterization of selected transition metal nano-ferrites. Medziagotyra 17:302–307

    Google Scholar 

  7. Sharifianjazi F, Moradi M, Parvin N, Nemati A, Jafari Rad A, Sheysi N, Abouchenari A, Mohammadi A, Karbasi S, Ahmadi Z, Esmaeilkhanian A, Irani M, Pakseresht A, Sahmani S, Shahedi Asl M (2020) Magnetic CoFe2O4 nanoparticles doped with metal ions: A review. Ceram Int 46:18391–18412

    Article  CAS  Google Scholar 

  8. Shirsath SE, Jadhav SS, Mane ML, Li S (2018) In: Klein L, Aparicio M, Jitianu A (eds) Handbook of sol-gel science and technology. Springer, Cham

    Google Scholar 

  9. Parashar M, Shukla VK, Singh R (2020)  Metal oxides nanoparticles via sol–gel method: a review on synthesis, characterization and applications. J Mater Sci Mater Electron 31:3729

    Article  CAS  Google Scholar 

  10. Hench LL, West JK  (1990) The Sol-gel process. Chem Rev 90:33–72

    Article  CAS  Google Scholar 

  11. González JA, Andrés JP, López Antón R, De Toro JA, Normile PS, Muniz P, Riveiro JM, Nogués J (2017) Maximizing exchange bias in Co/CoO Core/Shell nanoparticles by lattice matching between the shell and the embedding matrix.  Chem Mater 29:5200–5206

    Article  CAS  Google Scholar 

  12. Dervin S, Pillai SC (2017) An introduction to sol-gel processing for aerogels. In: Pillai S, Hehir S (eds) Sol-gel materials for energy, environment and electronic applications. Springer, Cham, pp 1–22

    Google Scholar 

  13. Amin N, Ul Hasan MS, Majeed Z, Latif Z, Ajaz un Nabi M, Mahmood K, Ali A, Mehmood K, Fatima M, Akhtar M, Arshad MI, Bibi A, Iqbal MZ, Jabeen F, Bano N (2020) Structural, electrical, optical and dielectric properties of yttrium substituted cadmium ferrites prepared by Co-precipitation method  Ceram Int 46:20798–20809

    Google Scholar 

  14. Shirsath SE, Mane ML, Yasukawa Y, Liu X, Morisako A (2013) Chemical tuning of structure formation and combustion process in CoDy0.1Fe1.9O4 nanoparticles: Influence@pH. J Nanoparticle Res 15:1–13

    Article  CAS  Google Scholar 

  15. Pradeep A, Priyadharsini P, Chandrasekaran G (2008) Production of single phase nano size NiFe2O4 particles using sol-gel auto combustion route by optimizing the preparation conditions. Mater Chem Phys 112:572–576

    Article  CAS  Google Scholar 

  16. Hashemi SM, Hasani S,  Ardakani KJ, Davar FT (2019) The effect of simultaneous addition of ethylene glycol and agarose on the structural and magnetic properties of CoFe2O4 nanoparticles prepared by the sol-gel auto-combustion method. J Magn Magn Mater 492:165714

    Google Scholar 

  17. Dumitrescu AM, Samoila PM, Nica V, Doroftei F, Iordan AR, Palamaru MN (2013) Study of the chelating/fuel agents influence on NiFe2O4 samples with potential catalytic properties. Powder Technol 243:9–17

    Article  CAS  Google Scholar 

  18. Slatineanu T, Diana E, Nica V, Oancea V, Caltun OF, Iordan AR, Palamaru MN (2012) The influence of the chelating/combustion agents on the structure and magnetic properties of zinc ferrite. Cent Eur J Chem 10:1799–1807

    CAS  Google Scholar 

  19. Arienzo MD, Scotti R, Credico B Di, Redaelli M (2017) Synthesis and characterization of morphology-controlled TiO2 nanocrystals : Opportunities and challenges for their application in photocatalytic materials. In: Fornasiero P, Cargnello M (eds) Morphological, compositional, and shape control of materials for catalysis. Elsevier, pp 477–540 (2017)

    Google Scholar 

  20. Mohammad SN (2020) Nanomaterials synthesis routes. In: Synthesis of nanomaterials. Springer, Cham, pp 13–26

    Google Scholar 

  21. Grabowska E, Marchelek M, Paszkiewicz-gawron M, Zaleska-medynska A (2018) Metal oxide photocatalysts. In: Zaleska-Medynska A (ed) Metal oxide-based photocatalysis fundamentals and prospects for application. Elsevier, pp 51–209

    Google Scholar 

  22. Parvez K (2019) Two-dimensional nanomaterials: crystal structure and synthesis. In: Nurunnabi M, McCarthy JR (eds) Biomedical applications of graphene and 2D nanomaterials. Elsevier, pp 1–25

    Google Scholar 

  23. Li J, Wu Q, Wu J (2015) Synthesis of nanoparticles via solvothermal and hydrothermal methods. In: Aliofkhazraei M (ed) Handbook of nanoparticles. Springer, Cham, pp 1–28

    Google Scholar 

  24. Nunes D, Pimentel A, Santos L, Barquinha P, Pereira L, Fortunato E, Martins R (2019) Synthesis, design, and morphology of metal oxide nanostructures. In: Nunes D, Pimentel A, Santos L, Barquinha P, Pereira L, Fortunato E, Martins R (eds) Metal oxide nanostructures. Elsevier, pp 21–57

    Google Scholar 

  25. Wang J, Ren F, Yi R, Yan A, Qiu G, Liu X (2009) Solvothermal synthesis and magnetic properties of size-controlled nickel ferrite nanoparticles. J Alloys Compd 479:791–796

    Article  CAS  Google Scholar 

  26. Chen W, Liu D, Wu W, Zhang H, Wu J (2017) Structure and magnetic properties evolution of rod-like Co0.5Ni0.25Zn0.25DyxFe2−xO4 synthesized by solvothermal method.J Magn Magn Mater 422:49–56

    Article  CAS  Google Scholar 

  27. Ji R, Cao C, Chen Z, Zhai H, Bai J (2014) Solvothermal synthesis of CoxFe3-xO4 spheres and their microwave absorption properties. J Mater Chem C 2:5944–5953

    Article  CAS  Google Scholar 

  28. Yan W, Jiang W, Zhang Q, Li Y, Wang H (2010) Structure and magnetic properties of nickel-zinc ferrite microspheres synthesized by solvothermal method. Mater Sci Eng B Solid-State Mater Adv Technol 171:144–148

    Article  CAS  Google Scholar 

  29. de Medeiros F, Madigou V, Lopes-Moriyama AL, de Souza CP, Leroux C (2020) ynthesis of CoFe2O4 nanocubes. Nano-structures and nano-objects 21:100422

    Google Scholar 

  30. Demazeau G (2010) Solvothermal processes : definition, key factors governing the involved chemical reactions and new trends. Z Naturforsch 65b:999–1006

    Google Scholar 

  31. Sheikhhosseini E, Ranjbar M (2017) Solid-state thermal decomposition method for synthesis and characterization Mg/carbon nanocomposites and investigation of optical investigation. J Mater Sci Mater Electron 28:6201–6207

    Article  CAS  Google Scholar 

  32. Odularu AT (2018) Metal nanoparticles: Thermal decomposition, biomedicinal applications to cancer treatment, and future perspectives. Bioinorg Chem Appl 2018

    Google Scholar 

  33. Varanda LC, Souza CGS, Moraes DA, Neves HR, Souza Junior JB, Silva MF, Bini RA, Albers RF, Silva TL, Beck W (2019) Size and shape-controlled nanomaterials based on modified polyol and thermal decomposition approaches. An Acad Bras Cienc 91:1–32

    Article  CAS  Google Scholar 

  34. Shahjuee T, Masoudpanah SM, Mirkazemi SM (2019) Thermal decomposition synthesis of MgFe2O4 nanoparticles for magnetic hyperthermia. J Supercond Nov Magn 32:1347–1352

    Article  CAS  Google Scholar 

  35. Niraula G, Shrivastava N, Akhtar K, Javed Y, Coaquira JAH, Sharma SK (2020) Liquid-phase synthesis of multifunctional nanomaterials: a recent update. In: Javed SKS and Y (ed) Magnetic nanoheterostructures, nanomedicine and nanotoxicology. Springer, pp 1–56

    Google Scholar 

  36. Umut E (2016) Surface modification of nanoparticles used in biomedical applications. In: Aliofkhazraei M (ed) Modern surface engineering treatments. INTECH Open Access, p 13 (2016)

    Google Scholar 

  37. Khan LU, Khan ZU (2017) Bifunctional nanomaterials: magnetism, luminescence and multimodal biomedical applications. In: Sharma SK (ed) Complex magnetic nanostructures: synthesis, assembly and applications. Springer, pp 1–464

    Google Scholar 

  38. Fereshteh Z, Salavati-Niasari M (2017) Effect of ligand on particle size and morphology of nanostructures synthesized by thermal decomposition of coordination compounds. Adv Colloid Interface Sci 243:86–104

    Google Scholar 

  39. Singh G, Chandra S (2018) Electrochemical performance of MnFe2O4 nano-ferrites synthesized using thermal decomposition method. Int J Hydrogen Energy 43:4058–4066

    Article  CAS  Google Scholar 

  40. Mahhouti Z, El Moussaoui H, Mahfoud T, Hamedoun M, El Marssi M, Lahmar A, El Kenz A, Benyoussef A (2019) Chemical synthesis and magnetic properties of monodisperse cobalt ferrite nanoparticles.  J Mater Sci Mater Electron 30:14913–14922

    Article  CAS  Google Scholar 

  41. Sarveena, Muraca D, Zelis PM, Javed Y, Ahmad N, Vargas JM, Moscoso-Londõno, Knobel M, Singh M, Sharma SK (2016) Surface and interface interplay on the oxidizing temperature of iron oxide and Au – iron oxide. RSC Adv 6:70394–70404

    Google Scholar 

  42. Babu LK, Reddy YVR (2020) A novel thermal decomposition approach for the synthesis and properties of superparamagnetic nanocrystalline NiFe2O4 and Its antibacterial, electrocatalytic properties. J Supercond Nov Magn 33:1013–1021

    Article  CAS  Google Scholar 

  43. Prasad S, Kumar V, Kirubanandam S, Barhoum A (2018) Engineered nanomaterials: nanofabrication and surface functionalization. In: Barhoum A, Makhlouf ASH (eds) Emerging applications of nanoparticles and architectural nanostructures: current prospects and future trends. Elsevier, pp 305–340

    Google Scholar 

  44. Shoba M, Kaleemulla S, Krishnamoorthi C (2020) Structural, dielectric and magnetic properties of ZnFe2-xSrxO4 nanoparticles prepared by co-precipitation method. Phys B Condens Matter 583: 412018

    Google Scholar 

  45. Cruz IF, Freire C, Araújo JP, Pereira C, Pereira AM (2018) Multifunctional ferrite nanoparticles: From current trends toward the future. In: El-Gendy AA, Barandiarán JM, Hadimani RL (eds) Micro and nano technologies, magnetic nanostructured materials. Elsevier, pp 59–116

    Google Scholar 

  46. Nasir Z, Shakir ML, Wahab R, Shoeb M, Alam P, Khan RH, Mobin M (2017) Co-precipitation synthesis and characterization of Co doped SnO2 NPs, HSA interaction via various spectroscopic techniques and their antimicrobial and photocatalytic activities. Int J Biol Macromol 94:554–565

    Article  CAS  Google Scholar 

  47. Rane AV, Kanny K, Abitha VK (2018) Thomas S Methods for synthesis of nanoparticles and fabrication of nanocomposites. In: Bhagyaraj SM, Oluwafemi OS, Kalarikkal N, Thomas S (eds) Micro and nano technologies, synthesis of inorganic nanomaterials. Woodhead Publishing, pp 121–139

    Google Scholar 

  48. de Oliveira Sousa Neto V, Freire TM, Saraiva GD, Muniz CR, Cunha MS, Fechine PBA, do Nascimento RF (2019) Water treatment devices based on zero-valent metal and metal oxide nanomaterials. In: do Nascimento RF Ferreira OP, De Paula AJ, de Neto VOS (eds) Advanced nanomaterials: nanomaterials applications for environmental matrices. pp 187–225

    Google Scholar 

  49. Varanda LC, de Souza CGS, Perecin C, Moraes D, de Queiróz DF, Neves HR, Junior JBS, da Silva MF, Albers RF, da Silva TL (2019) Inorganic and organic–inorganic composite nanoparticles with potential biomedical applications: synthesis challenges for enhanced performance. In: Grumezescu AM, Grumezescu V (eds) Materials for biomedical engineering. Elsevier, pp 47–99

    Google Scholar 

  50. Goh KW, Johan MR, Wong YH (2016) Effect of pH variation on the stability and structural properties of In(OH)3 nanoparticles synthesized by co-precipitation method.  Appl Phys A Mater Sci Process 122:1–9

    Article  CAS  Google Scholar 

  51. Praveena K, Sadhana K (2015) Ferromagnetic properties of Zn substituted spinel ferrites for high frequency applications. Int J Sci Res Publ 5:1–21

    Google Scholar 

  52. Mascolo MC, Pei Y, Ring TA (2013) Room temperature Co-precipitation synthesis of magnetite nanoparticles in a large pH window with different bases.Materials (Basel) 6:5549–5567

    Article  CAS  Google Scholar 

  53. Chen X, Li Y, Huang L, Zou D, Wu E, Liu Y, Xie Y, Yao R, Liao S, Wang G, Zheng F (2017) Effects of precipitant and pH on coprecipitation of nanosized Co-Cr-V alloy powders. Materials (Basel) 10:1108

    Article  CAS  Google Scholar 

  54. Lamdab U, Wetchakun K, Kangwansupamonkon W, Wetchakun N (2018) Effect of a pH-controlled co-precipitation process on rhodamine B adsorption of MnFe2O4 nanoparticles. RSC Adv 8:6709–6718

    Article  CAS  Google Scholar 

  55. Iranmanesh P, Tabatabai Yazdi S, Mehran M, Saeednia S (2018) Superior magnetic properties of Ni ferrite nanoparticles synthesized by capping agent-free one-step coprecipitation route at different pH values. J Magn Magn Mater 449:172–179

    Article  CAS  Google Scholar 

  56. Prabhakaran T, Mangalaraja RV, Denardin JC, Jiménez JA (2017) The effect of reaction temperature on the structural and magnetic properties of nano CoFe2O4. Ceram Int 43:5599–5606

    Article  CAS  Google Scholar 

  57. Amer MA, Meaz TM, Mostafa AG, El-Ghazally HF (2015) Influence of annealing process on phase transition of Cu–Al nanoferrites synthesized by a coprecipitation method. Mater Sci Semicond Process 36:49–56

    Article  CAS  Google Scholar 

  58. Sinkó K, Manek E, Meiszterics A, Havancsák K, Vainio U, Peterlik H (2012) Liquid-phase syntheses of cobalt ferrite nanoparticles.  J Nanoparticle Res 14:894

    Article  CAS  Google Scholar 

  59. Kim Y Il, Kim D, Lee CS, Phys B (2003) Synthesis and characterization of CoFe2O4 magnetic nanoparticles prepared by temperature-controlled coprecipitation method. Condensed Matter 337:42–51

    Google Scholar 

  60. Kader SS, Paul DP, Hoque SM (2014) Effect of temperature on the structural and magnetic Properties of CuFe2O4 Nano particle prepared by chemical Co-precipitation method. Int J Mater Mech Manuf 2:5–8

    CAS  Google Scholar 

  61. Yakubu A, Abbas Z, Ibrahim N, Hashim M (2015) Effect of temperature on structural, magnetic and dielectric properties of Cobalt ferrite nanoparticles prepared via co-precipitation method. Phys Sci Int J 8:1–8

    Article  Google Scholar 

  62. Saragi T, Depi BL, Butarbutar S, Permana B, Risdiana (2018) The impact of synthesis temperature on magnetite nanoparticles size synthesized by co-precipitation method. J Phys Conf Ser 1013:012190

    Google Scholar 

  63. Huang GY, Xu SM, Li LY, Wang XJ (2014) Effect of surfactants on dispersion property and morphology of nano-sized nickel powders. Trans Nonferrous Met Soc China 24:3739–3746

    Article  CAS  Google Scholar 

  64. Zafar K, Aadil M, Shahi MN, Sabeeh H, Nazar F, Iqbal M, Yousuf MA (2020) Physical, structural and dielectric parameters evaluation of new Mg1-xCoxNiyFe2-yO4 nano-ferrites synthesized via wet chemical approach.  AAAFM Energy 1:36–44

    Article  Google Scholar 

  65. Powar RR, Phadtare VD, Parale VG, Pathak S, Sanadi KR, Park HH, Patil DR, Piste PB, Zambare DN (2020) Effect of zinc substitution on magnesium ferrite nanoparticles: Structural, electrical, magnetic, and gas-sensing properties. Mater Sci Eng B 262:114776

    Google Scholar 

  66. Vaidyanathan G, Sendhilnathan S (2008) Characterization of Co1-xZnxFe2O4 nanoparticles synthesized by co-precipitation method. Phys B Condens Matter 403:2157–2167

    Article  CAS  Google Scholar 

  67. El Foulani AH, Aamouche A, Mohseni F, Amaral JS, Tobaldi DM, Pullar RC (2019) Effect of surfactants on the optical and magnetic properties of cobalt-zinc ferrite Co0.5Zn0.5Fe2O4. J Alloys Compd 774:1250–1259

    Article  CAS  Google Scholar 

  68. Lu HF, Hong RY, Li HZ (2011) Influence of surfactants on co-precipitation synthesis of strontium ferrite. J Alloys Compd 509:10127–10131

    Article  CAS  Google Scholar 

  69. Mirzaei A, Neri G (2016) Microwave-assisted synthesis of metal oxide nanostructures for gas sensing application: A review. Sens Actuat B Chem 237:749–775

    Article  CAS  Google Scholar 

  70. Lagashetty A, Havanoor V, Basavaraja S, Balaji SD, Venkataraman A (2007) Microwave-assisted route for synthesis of nanosized metal oxides. Sci Technol Adv Mater 8:484–493

    Article  CAS  Google Scholar 

  71. Baghbanzadeh M, Carbone L, Cozzoli PD, Kappe CO (2011) Microwave-assisted synthesis of colloidal inorganic nanocrystals. Angew Chem Int Ed 50:11312–11359

    Article  CAS  Google Scholar 

  72. Polshettiwar V, Nadagouda MN, Varma RS (2009) Microwave-assisted chemistry: A rapid and sustainable route to synthesis of organics and nanomaterials. Aust J Chem 62:16–26

    Article  CAS  Google Scholar 

  73. Thongtem T, Phuruangrat A, Thongtem S (2010) Microwave-assisted synthesis and characterization of SrMoO4 and SrWO4 nanocrystals. J Nanoparticle Res 12:2287–2294

    Article  CAS  Google Scholar 

  74. Chikan V, McLaurin EJ (2016) Rapid nanoparticle synthesis by magnetic and microwave heating. Nanomaterials 6:85

    Article  CAS  Google Scholar 

  75. Gupta D, Jamwal D, Rana D, Katoch A (2018) Microwave synthesized nanocomposites for enhancing oral bioavailability of drugs. In: Inamuddin, Asiri AM, Mohammad A (eds) Applications of nanocomposite materials in drug delivery. Woodhead Publishing, pp 619–632

    Google Scholar 

  76. Gude V, Patil P, Martinez-Guerra E, Deng S, Nirmalakhandan N (2013) Microwave energy potential for biodiesel production. Sustain Chem Process 1:5

    Google Scholar 

  77. Dallinger D, Kappe CO (2007) Microwave-assisted synthesis in water as solvent. Chem Rev 107:2563–2591

    Article  CAS  Google Scholar 

  78. Kappe CO (2006) Microwave-assisted chemistry. Compr Med Chem II 3:837–860

    CAS  Google Scholar 

  79. Leadbeater NE (2014) Microwave-assisted synthesis: general concepts. In: Hoogenboom R, Schubert US, Wiesbrock F (eds) Microwave-assisted polymer synthesis. Springer, Cham, pp 1–44

    Google Scholar 

  80. Dąbrowska S, Chudoba T, Wojnarowicz J,  Łojkowski W. (2018) Current trends in the development of microwave reactors for the synthesis of nanomaterials in laboratories and industries: A review. Crystals 8:379

    Google Scholar 

  81. Stefanidis GD, Muñoz AN, Sturm GSJ, Stankiewicz A (2014) A helicopter view of microwave application to chemical processes: Reactions, separations, and equipment concepts. Rev Chem Eng 30:233–259

    Article  CAS  Google Scholar 

  82. Lidstrom P, Tierney J, Wathey B, Westman J (2001) Microwave-assisted organic synthesis-a review. Tetrahedron 57:9225–9283

    Article  CAS  Google Scholar 

  83. Nishioka M, Miyakawa M, Daino Y, Kataoka H, Koda H, Sato K, Suzuki TM (2013) Single-mode microwave reactor used for continuous flow reactions under elevated pressure.  Ind Eng Chem Res 52:4683–4687

    Article  CAS  Google Scholar 

  84. Glasnov TN, Kappe CO (2007) Microwave-assisted synthesis under continuous-flow conditions. Macromol Rapid Commun 28:395–410

    Article  CAS  Google Scholar 

  85. Gawande MB, Shelke SN, Zboril R, Varma RS (2014) Microwave-assisted chemistry: Synthetic applications for rapid assembly of nanomaterials and organics. Acc Chem Res 47:1338–1348

    Article  CAS  Google Scholar 

  86. Bensebaa F, Zavaliche F, Ecuyer PL, Cochrane RW, Veres T (2004) Microwave synthesis and characterization of Co–ferrite nanoparticles. J Colloid Interface Sci 277:104–110

    Article  CAS  Google Scholar 

  87. Shebl A, Hassan AA, Salama DM, El-aziz MEA, Abd MSA (2020) Template-free microwave-assisted hydrothermal synthesis of manganese zinc ferrite as a nanofertilizer for squash plant ( Cucurbita pepo L ). Heliyon 6:e03596

    Google Scholar 

  88. Zhenyu L, Guangliang X, Yalin Z (2007) Microwave assisted low temperature synthesis of MnZn ferrite nanoparticles. Nanoscale Res Lett 2:40–43

    Article  CAS  Google Scholar 

  89. Manikandan A, Durka M, Antony SA (2014) A novel synthesis, structural, morphological, and opto magnetic characterizations of magnetically separable spinel CoxMn1−xFe2O4 ( 0 ≤ x ≤ 1 ) Nano catalysts. J Supercond Nov Magn 27:2841–2857

    Article  CAS  Google Scholar 

  90. Chen D, Zhang Y, Chen B, Kang Z (2013) Coupling effect of microwave and mechanical forces during the synthesis of ferrite nanoparticles by microwave-assisted ball milling. Ind Eng Chem Res 52:14179

    Article  CAS  Google Scholar 

  91. Kane SN, Verma R, Tiwari P, Mazaleyrat F (2019) Preparation condition , composition and post-preparation thermal treatment assisted control of structural and magnetic properties of spinel nano ferrites. In: AIP conference proceedings, p 020003

    Google Scholar 

  92. Singh C, Sai R, Raland RD, Shivashankar SA (2020) Mapping solution loss-tangent dependent deposition rate of MnZn-ferrite via microwave-assisted solvothermal processing. In: AIP conference proceedings, p 030080

    Google Scholar 

  93. Tiwari P, Kane SN, Verma R, Mazaleyrat F (2019) Preparation condition assisted modification of structural and magnetic properties of MgFe2O4 nano ferrite. In: AIP conference proceedings, p 160003

    Google Scholar 

  94. Azam A (2012) Microwave assisted synthesis and characterization of Co doped Cu ferrite nanoparticles. J Alloys Compd 540:145–153

    Article  CAS  Google Scholar 

  95. Vilvanathaprabu A, Ravikumar B, Perumal S (2020) Synthesis of vanadium ferrite nanoparticles by microwave assisted technique. In: Journal of Physics: Conference Series1644:012034

    Google Scholar 

  96. Sadanandan AM, Khatri PK, Jain SL (2020) Highly efficient microwave assisted synthesis of magnetically separable GO-CoFe2O4 nanocomposite for visible light induced oxidative coupling of benzyl amines. J Photochem Photobiol A Chem 400:112697

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Surender K. Sharma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sarveena, Kumar, G., Kondal, N., Singh, M., Sharma, S.K. (2021). Wet Chemical Synthesis and Processing of Nanoferrites in Terms of Their Shape, Size and Physiochemical Properties. In: Sharma, S.K. (eds) Spinel Nanoferrites. Topics in Mining, Metallurgy and Materials Engineering. Springer, Cham. https://doi.org/10.1007/978-3-030-79960-1_3

Download citation

Publish with us

Policies and ethics