Skip to main content

Low Loss Soft Ferrites Nanoparticles for Applications Up to S-band

  • Chapter
  • First Online:
Spinel Nanoferrites

Abstract

This chapter aims at providing a better understanding of soft ferrites and their role in ultra-high-frequency applications. In wireless communication industry trends of miniaturized, highly efficient and wide-band antenna become the new research areas of the antenna technology. Antenna miniaturization cannot be achieved by simply changing the structural design, and it is important to improve the material characteristics of antenna substrates. Furthermore, to improve the antenna efficiency, almost matched permittivity and permeability values and low magnetic as well as dielectric loss tangents are required especially at ultra-high frequency (UHF), L-band, and S-band frequency range. For efficiency improvement and miniaturization of antennas, magneto-dielectric materials have significant advantages with matching permittivity and permeability values along with sufficiently low magnetic and dielectric loss tangents. Ferrites with very high resistance have been reported as the best host materials to produce low loss magneto-dielectric materials for high-frequency antenna applications as they present moderate permeability and permittivity values. In this chapter, the emphasis is given on the soft ferrites Mn–Zn, Ni–Zn spinel ferrite, and Co2Z type barium hexaferrite. The chapter also explains the effect of substitution of different dopant ions on the properties of soft ferrites.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kawano K, Sadurai N, Kusumi S, Kishi H (2006) Magnetic permeability and microstructure of the Bi, Si oxides-doped NiZnCu ferrite composite material. J Magn Magn Mater 297(1):26–32

    Article  CAS  Google Scholar 

  2. Tang X, Zhang H, Su H, Zhong Z, Bai F (2011) Influence of microstructure on the DC bias superposition characteristics of NiZn ferrites. IEEE Trans Magn 47(10):4332–4335 (2011)

    Google Scholar 

  3. Moon KS, Wong CP, Kim SH (2007) Ferrite polymer composite for improving the electromagnetic compatibility of semiconductor packaging. J Electron Mater 36(12):1711–1718

    Article  CAS  Google Scholar 

  4. Kavanlooee M, Hashemi B, Maleki Ghaleh H, Kavanlooee J (2012) Effects of annealing on phase evolution,microstructure and magnetic properties of nanocrystalline Ball-Milled LiZnTi ferrite. J Electron Mater 41:3082–3086 (2012)

    Google Scholar 

  5. Kladnig WF, Zenger M (1992) Modern ferrites technologies and products. UNIDO

    Google Scholar 

  6. Lazarevic ZZ, Jovalekic C, Milutinovic A, Romcevic MJ, Romcevic NZ (2012) Preparation and characterization of nano ferrites. Acta Phys Pol, A 121(3):682

    Article  CAS  Google Scholar 

  7. Shahane GS, Zipare KV, Pant RP (2013) Synthesis and characterization of superparamagnetic Fe3O4 nanoparticles for ferrofluid applications. Magneto Hydrodyn 49(3–4):317–321

    Article  Google Scholar 

  8. Shahane GS, Kumar A, Arora M, Pant RP, Lal K (2010) Synthesis and characterization of Ni-Zn ferrite nanoparticles. J Magn Magn Mater 322(8):1015–1019

    Article  CAS  Google Scholar 

  9. Sharma US, Sharma RN, Shah R (2014) Physical and magnetic properties of Manganese Ferrite Nanoparticles. Int J Eng Res Appl 4(8):14–17

    Google Scholar 

  10. Standley KJ, Oxide magnetic materials, 2nd edn. Oxford University Press

    Google Scholar 

  11. Caffarena VR, Ogasawara T, Capitaneo JL, Pinho MS (2007) Magnetic properties of Z-type Ba3Co1.3Zn0.3Cu0.4Fe24O41 nanoparticles. Mater Chem Phys 101:81–86

    Article  CAS  Google Scholar 

  12. Pullar RC (2012) Hexagonal ferrites: A review of the synthesis properties and applications of hexaferrite ceramics. Prog Mater Sci 57(7):1191–1334

    Article  CAS  Google Scholar 

  13. Fang HC, Ong CK (1999) Epitaxy barium ferrite thin films on LiTaO3 substrate. J Appl Phys 86(4):2191

    Article  CAS  Google Scholar 

  14. Harris, Chen VG, Chen Z, Yoon Y, Sakai S, Gieler T, Yang A, He A, Ziemer Y, Sun KS, Vittoria NX (2006) Ba-hexaferrite films for next generation microwave devices. Carmine J Appl Phys 99(8):08M911

    Google Scholar 

  15. Rakshit SK, Parida SC, Dash S, Singh Z, Sen BK, Venugopal V (2007) Thermodynamic studies on SrFe12O19(s), SrFe2O4(s), Sr2Fe2O5(s),and Sr3Fe2O6(s). J Solid State Chem 180(2):523–532

    Article  CAS  Google Scholar 

  16. Autissier D, Podembski A, Jacquiod C (1997) Microwave properties of M and Z type Hexaferrites. J Phys IV 7(C1):409–412

    Google Scholar 

  17. Lubitz P, Rachford FJ (2002) Z-type Ba hexagonal ferrites with tailored microwave properties. J Appl Phys 91(10):7613–7615

    Article  CAS  Google Scholar 

  18. Wang X, Li L, Su S, Gui Z (2005) Novel ferrimagnetic material for fabricating multilayer chip inductors low-temperature sintered Ba3Co2-xZnxFe24O41 hexaferrites. J Am Ceram Soc 88(2):478–480

    Article  CAS  Google Scholar 

  19. Töpfer J, Kračunovska S, Barth S, Müller E (2009) Co2 Z hexagonal ferrites for multilayer inductors. Advanc Appl Ceram 108(5):280–284

    Article  CAS  Google Scholar 

  20. Zhang L, Puri A, Serte K, Volakis JL, Verweij H (2011) Low loss Z-type Ba3Co2Fe24O41 Hexaferrites for Antennas and RF devices. IEEE Trans Magn 47(8):2149–2152

    Article  CAS  Google Scholar 

  21. Smit J, Wijn HPJ (1959) Ferrites: physical properties of ferrimagnetic oxides in relation to their technical applications. Philips’ Technical Library, Eindhoven, The Netherlands

    Google Scholar 

  22. Verwell J (1971) In: Smit (ed) Magnetic properties of materials. Mc Graw Hill, New York, p 64

    Google Scholar 

  23. Jacquiod C Autissier D (1992) Rare-earth substitutions in Z-type hexaferrites. J Magn Magn Mater 104–107:419–420

    Google Scholar 

  24. Braden RA, Gordon I, Harvey RL (1966) Microwave properties of planar hexagonal ferrites. IEEE Trans Magn 2(1):43–47

    Article  CAS  Google Scholar 

  25. Nakamura T, Hankui E (2003) Control of high frequency permeability in polycrystalline(Ba,Co)- Z-type hexagonal ferrite. J Magn Magn Mater 257(2–3):158–164

    Article  CAS  Google Scholar 

  26. Goldman A (1990) Modern ferrite technology. Van Nostrand Reinhold, New York

    Google Scholar 

  27. Spaldin N (2003) Magnetic materials: fundamental and device applications. Cambridge University Press, Cambridge

    Google Scholar 

  28. Wahba AM, Mohamed MB (2014)Structural,magnetic and dielectric properties of nanocrystalline Cr-substituted Co0.8Ni0.2Fe2O4 ferrite. Ceram Int 40(4):6127–6135

    Article  CAS  Google Scholar 

  29. Corliss LM, Hasting JM, Verwey E (1953) J Jr Chem Phys 90:1013

    CAS  Google Scholar 

  30. Sawataki GA, Wounde FVD, Morish AH (1962) Cation distributions in Octahedral and Tetrahedral sites of the ferrimagnetic Spinel CoFe2O4. J Appl Phys 39(2):1204

    Google Scholar 

  31. Xu JJ, Yang CM, Zou HF, Song YH, Gao GM, An BC, Gan SC (2009) Electromagnetic and microwave absorbing properties of Co2 Z-type hexaferrites doped with La3+. J Magn Magn Mater 321:3231–3235

    Article  CAS  Google Scholar 

  32. Zhang H, Yao X, Wu M, Zhang L (2003) Complex permittivity and permeability of Zn-Co substituted Z type hexaferrite prepared by citrate sol-gel process. Br Ceram Trans 102(1):10–15

    Article  CAS  Google Scholar 

  33. Hankiewicz JH, Pajak Z, Murakhowski AA (1991) Nuclear magnetic resonance in Ba3Co2Fe24O41 ferrite. J Magn Magn Mater 101(1–3):134–136

    Google Scholar 

  34. Tachibanaa T, Nakagawa T, Takada Y (2003) X-ray and neutron diffraction studies on iron-substituted Z-type hexagonal barium ferrite Ba3Co2−xFe24+xO41(x = 0−0.6). J Magn Magn Mater 262(2):248–257

    Article  CAS  Google Scholar 

  35. Murty VRK, Vishwanathan B (1990) Ferrites materials: science and technology. Narosa Publishing House, Mumbai

    Google Scholar 

  36. Pozar DM (1989) Microwave engineering. Wiley, Hoboken, pp 92–98

    Google Scholar 

  37. Vittoria C (2011) Magnetics, dielectrics, and wave propagation with MATLAB(R) codes. Taylor and Francis Group LLC, Boca Raton, FL, pp 281–333

    Google Scholar 

  38. Chen Y, Daigle A, Fitchorov T, Bolin H, Geiler M, Geiler A, Vittoria C, Harris VG (2011) Electronic tuning of magnetic permeability in Co2 Z hexaferrite toward high frequency electromagnetic device miniaturization. Appl Phys Lett 98:202502

    Google Scholar 

  39. Daigle AP, Geiler AL, DuPrel E, Chen Y, Parimi PV, Vittoria C, Harris VG (2011) Numeric simulations of a novel wideband electromagnetic Band Gap Metamaterial utilizing oriented Cobalt-substituted Z-type Barium Hexaferrites. IEEE Magn Lett 2:0500104

    Article  CAS  Google Scholar 

  40. Harris VG, Chen Z, Chen Y, Yoon SD, Sakai T, Geiler A, Yang A, He Y, Ziemer KS, Sun N, Vittoria C (2006) Ba-hexaferrites films for next generation microwave devices. J Appl Phys 99:08M911

    Article  CAS  Google Scholar 

  41. Harris VG (2012) Modern microwave ferrites. IEEE Trans Magn 48(3):1075

    Article  CAS  Google Scholar 

  42. Harris VG, Geiler A, Chen Y, Yoon S, Wu M, Yang A, Chen Z, He P, Parimi PV, Zuo X, Patton CE, Abe M, Acher O, Vittoria C (2009) Recent advances in processing and applications of microwave ferrites. J Magn Magn Mater 321(14):2035–2047

    Article  CAS  Google Scholar 

  43. Su Z, Bennett S, Hu B, Chen Y, Harris VG (2014) Magnetic and microwave properties of U-type hexaferrite films with high remanence and low ferromagnetic resonance linewidth. J Appl Phys 115(17):17A504

    Article  CAS  Google Scholar 

  44. Su Z, Chen Y, Hu B et al (2013) Crystallographically textured self-biasedW-type hexaferrites for X-band microwave applications. J Appl Phys 113:17B305

    Article  CAS  Google Scholar 

  45. Li ZW, Lin GQ, Chen LF, Wu YP, Ong CK (2005) Size effect on the static and dynamic magnetic properties of W-type barrium ferrite composites: From microparticles to nanoparticles. Appl J Phys 98(9):094310

    Google Scholar 

  46. Singh P, Babbar VK, Razdan A, Puri RK, Goel TC (2000) Complex permittivity, permeability, and X-band microwave absorption of CaCoTi ferrite composites. J Appl Phys 87(9):4362

    Article  CAS  Google Scholar 

  47. Ruan SP, Xu BK, Suo H, Wu FQ, Xiang SQ, Zhao MY (2000) Microwave absorptive behavior of Zn-Co substituted W-type Ba hexaferrite nanocrystalline composite material. J Magn Magn Mater 212(1–2):175–177

    Article  CAS  Google Scholar 

  48. Sugimoto S, Haga K, Kagotani T, Inomata K (2005) Microwave absorption properties of Ba M-type ferrite prepared by a modified coprecipitation method. J Magn Magn Mater 290(2):1188–1191

    Article  CAS  Google Scholar 

  49. Heck C (1974) Magnetic materials and their application. Butterworths, London, pp 511–517

    Google Scholar 

  50. Su H, Tang X, Bai F, Zhang H, Jing Y (2014) Low-loss Magneto-dielectric materials: Approaches and Developments. J Electron Mater 43:299–307

    Article  CAS  Google Scholar 

  51. Harris VG, Chen Z, Chen Y, Yoon SD, Sakai T, Gieler A, Yang A, He Y, Ziemer KS, Sun NX, Vittoria C (2006) J Appl Phys 99(8):08M911

    Article  CAS  Google Scholar 

  52. Bae S, Hong YK, Lee JJ, Jalli J, Abo GS, Lyle A, Nam IT, Seong WM, Kum JS, Park SH (2009) New synthetic route of Z-type (Ba3Co2Fe24O41) Hexaferrite Particles. IEEE Trans Magn 45(6):2557–2560

    Article  CAS  Google Scholar 

  53. Ozgur U, Alivov Y, Morkoc H (2009) Microwave ferrites, part1: fundamental properties. J Mater Sci: Mater Electron 20:789–834

    CAS  Google Scholar 

  54. Wu YP, Li ZW, Chen LF, Wang SJ, Ong CK (2004) Effect of doping SiO2 on high frequency magnetic properties for W-type barium ferrite. J Appl Phys 95(8):4235

    Article  CAS  Google Scholar 

  55. Jeong J, Cho KW, Hahn DW, Moon BC, Han YH (2005) Synthesis of Co2 Z Ba-ferrites. Mater Lett 59(29):3959–3962

    Article  CAS  Google Scholar 

  56. Zhang H, Li L, Zhou J, Yue Z, Ma Z, Gui Z (2001) Microstructure characterization and properties of chemically synthesized Co2 Z hexaferrite. J Eur Ceram Soc 21(2):149–153

    Article  CAS  Google Scholar 

  57. Nakamura T, Hankui E (2003) Control of high- frequency permeability in polycrystalline (Ba,Co)-Z-type hexagonal ferrite. J Magn Magn Mater 257(2):158–164

    Article  CAS  Google Scholar 

  58. Tachibana T, Nakagawa T, Takada Y, Shimada T, Yamamoto T (2004) Influence of ion substitution on the magnetic structure and permeability of Z-type hexagonal Ba-ferrites: Ba3Co2-xFe 24+x-yCr yO41. J Magn Magn Mater 284:369–375

    Article  CAS  Google Scholar 

  59. Matters-Kammerer M, Mackens U, Reimann K, Pietig R, Hennings D, Schreinemacher B, Mauczok R, Gruhlke S, Martiny C (2006) Material properties and RF applications of high k and ferrite LTCC ceramics. Microelectron Reliab 46(1):134–143

    Article  CAS  Google Scholar 

  60. Li ZW, Wu YP, Lin GQ, Chen LF (2007) Static and dynamic magnetic properties of CoZn substituted Z-type barium ferrite Ba3CoxZn2-xFe24O41 composites. J Magn Magn Mater 310(1):145–151

    Article  CAS  Google Scholar 

  61. Kracunovska S, Töpfer J (2009) Preparation, thermal stability and permeability behaviour of substituted Z-type hexagonal ferrites for multilayer inductors. J Electroceram 22:227–232

    Article  CAS  Google Scholar 

  62. PiresJúnior GFM, Rodrigues HO, Almeida JS, Sancho EO, Góes JC, Costa MM, Denardin JC, Sombra ASB (2010) Study of the dielectric and magnetic properties of Co2Y, Y-type hexaferrite (Ba2Co2Fe12O22) added with PbO and Bi2O3 in the RF frequency range. J Alloys Compd 493(1):326–334

    Google Scholar 

  63. Iqbal MJ, Ashiq MN, Hernández-Gómez P, Muχñoz JMM, Cabrera CT (2010) Influence of annealing temperature and doping rate on the magnetic properties of Zr-Mn substituted Sr-hexaferrite nanoparticles. J Alloys Compd 500(1):113–116

    Google Scholar 

  64. Zi ZF, Liu HY, Liu YN, Fang L, Liu QC, Dai JM, Zhu XB, Sun YP (2010) Magnetic properties of c-axis oriented Sr0.8La0.2Fe11.2Co0.2O19 ferrite film prepared by chemical solution deposition. J Magn Magn Mater 332(22):3638–3641

    Article  CAS  Google Scholar 

  65. Chen Z, Yang A, Mahalingam K, Averett KL, Gao J, Brown GJ Vittoria C, Harris VG (2010) Structure, magnetic and microwave properties of thick Ba-hexaferrite films epitaxially grown on GaN/Al2O3 substrates. Appl Phys Lett 96(24):242502 (2010)

    Google Scholar 

  66. Kim YJ, Kim SS (2010) Magnetic and microwave absorbing properties of Ti and Co substituted M- hexaferrites in Ka-band frequencies (26.5-40GHz). J Electroceram 24:314–318

    Article  CAS  Google Scholar 

  67. Wang LX, Song J, Zhang QT, Huang XG, Xu NC (2009) The microwave magnetic performance of Sm3+ doped BaCo2Fe16O27. J Alloys Compd 481(1):863–866

    Article  CAS  Google Scholar 

  68. Wang X, Ren T, Li L, Gui Z, Su S, Yue Z, Zhou J (2001) Synthesis of Cu modified Co2 Z hexaferrite with planar structure by a citrate precursor method. J Magn Magn Mater 234(2):255–260

    Article  CAS  Google Scholar 

  69. Wang X, Li L, Yue Z, Su S, Gui Z, Zhou J (2002) Preparation amd magnetic characterization of the ferroxplana ferrites Ba3Co2-xZnxfe24O41. J Magn Magn Mater 246(3):434–439

    Article  CAS  Google Scholar 

  70. Vara Prasad BBVS (2015) Effect of indium substitution on the electrical and magnetic properties of Ni-Zn ferrite. J Theor Appl Phys 9:267–272

    Google Scholar 

  71. Parvatheeswara B, Rao KH (2005) Distribution of In3+ ions in indium substituted Ni-Zn-Ti ferrites. J Magn Magn Mater 292:44–48

    Article  CAS  Google Scholar 

  72. Lakshman A, Rao KH, Mendiratta RG (2002) Magnetic properties of In3+ and Cr3+ substituted Mg-Mn ferrites. J Magn Magn Mater 250:92–97

    Article  CAS  Google Scholar 

  73. Ghosh S, Nambissan PMG, Bhattacharya R (2004) Positron annihilation and Mossbauer spectroscopic studies of In3+ substitution effects in bulk and nanocrystalline MgMn0.1Fe1.9-xInxO4. Phys Lett A 325(3):301–308

    Article  CAS  Google Scholar 

  74. De Fazio E, Bercoff PG, Jacobo SE (2011) Electromagnetic properties of manganese -zinc ferrite with lithium substitution. J Magn Magn Mater 323(22):2813–2817

    Article  CAS  Google Scholar 

  75. Jacobo SE, Bercoff PG (2016) Structural and electromagnetic properties of yttrium-substituted Ni-Zn ferrites. Ceram Int 42(6):7664–7668

    Article  CAS  Google Scholar 

  76. Amer MA, Hemeda OM, Olofa SA, Henaish MA (1994) Thermal properties of the ferrite system Co0.6Zn0.4CuxFe2-xO4. Appl Phys Comm 13(3–4):255–263

    CAS  Google Scholar 

  77. Reddy PV, Seshagiri Rao T (1982) Dielectric behaviour of mixed Li-Ni ferrites at low frequencies. J Less-Common Met 86:255–261

    Google Scholar 

  78. Jacobo SE, Fano WG, Razzitte AC (2002) The effect of rare earth substitution on the magnetic properties of Ni0.5Zn0.5MxFe2-xO4 (M: rare earth). Phys B 320(1–4):261–263

    Article  CAS  Google Scholar 

  79. Chen N, Gu M (2012) Microstructure and microwave absorption properties of Y-substituted Ni-Zn ferrites. Open J Metal 2(2):37–41

    Google Scholar 

  80. Thakur A, Mathur P, Singh M (2007) Ultra low loss soft magnetic nanoparticles for applications up to S-band. J Phys Chem Solids 68(3):378–381

    Article  CAS  Google Scholar 

  81. Sharma S, Daya KS, Sharma S, Singh M (2013) Ultra low loss soft magnetic nanoparticles for applications up to S-band. Applied Phys Lett 103(11):112402

    Google Scholar 

  82. Verwey EJW, De Boer JH (1936) Cation arrangement in a few oxides with crystal structures of the spinel type. Recl Trav Chim Pays-Bas 55:531

    Article  CAS  Google Scholar 

  83. Wagner KW (1913) The theory of incomplete dielectricity. Ann Phys 345:817–855

    Article  Google Scholar 

  84. Tsutaoka T, Ueshima M, Tokunaga T, Nakamura T, Hatakeyama K (1995) Frequency dispersion and temperature variation of complex permeability of NiZn ferrite composite materials. J Appl Phys 78(6):3983

    Article  CAS  Google Scholar 

  85. Sharma S (2016) Ph.D. thesis: Synthesis and characterization of magnetic nanoparticles for antenna applications

    Google Scholar 

  86. Sharma S, Daya KS, Sharma S, Singh M (2015) Sol-gel auto combustion processed soft Z-type hexa naoferrites for microwave antenna miniaturization. Ceram Int 41(5):7109–7114

    Article  CAS  Google Scholar 

  87. Shaikh PA, Kambale RC, Rao AV, Kolekar YD (2010) Structural, magnetic and electrical properties of Co-Ni-Mn ferrites synthesized by co-precipitation method. J Alloys Compd 492(1–2):590–596

    Article  CAS  Google Scholar 

  88. Koop CG (1951) On the dispersion of resistivity and dielectric constant of some semiconductors at audio frequencies. Phys Rev 83:121

    Google Scholar 

  89. Gama AM, Rezende MC, Dantas CC (2011) Dependence of microwave absorption properties on ferrite volume fraction in MnZn-ferrite/rubber radar absorbing materials. J Magn Magn Mater 323(22):2782–2785

    Article  CAS  Google Scholar 

Download references

Acknowledgements

SKS is thankful to PPGF-UFMA for motivation to work on this book project. The authors thank to different publishers to provide copyright permission to reproduce figures.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sharma, S., Verma, R., Singh, M., Sharma, S.K. (2021). Low Loss Soft Ferrites Nanoparticles for Applications Up to S-band. In: Sharma, S.K. (eds) Spinel Nanoferrites. Topics in Mining, Metallurgy and Materials Engineering. Springer, Cham. https://doi.org/10.1007/978-3-030-79960-1_2

Download citation

Publish with us

Policies and ethics