Skip to main content

A Simple Recovery Framework for Signals with Time-Varying Sparse Support

  • Chapter
  • First Online:
Advances in Data Science

Part of the book series: Association for Women in Mathematics Series ((AWMS,volume 26))

  • 861 Accesses

Abstract

Sparse recovery methods have been developed to solve multiple measurement vector (MMV) problems. These methods seek to reconstruct a collection of sparse signals from a small number of linear measurements, exploiting not only the sparsity but also certain correlations between the signals. Typically, the assumption is that the collection of signals shares a common joint support, allowing the problem to be solved more efficiently (or with fewer measurements) than solving many individual, single measurement vector (SMV) subproblems. Here, we relax this stringent assumption so that the signals may exhibit a changing support, a behavior that is much more prominent in applications. We propose a simple windowed framework that can utilize any traditional MMV method as a subroutine, and exhibits improved recovery when the MMV method incorporates prior information on signal support. In doing so, our framework enjoys natural extensions of existing theory and performance of such MMV methods. We demonstrate the value of this approach by using different MMV methods as subroutines within the proposed framework and applying it to both synthetic and real-world data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Aggarwal, H.K., Majumdar, A.: Extension of sparse randomized kaczmarz algorithm for multiple measurement vectors. In: IEEE In. Conf. Pat. Recog., pp. 1014–1019 (2014)

    Google Scholar 

  2. Baron, D., Wakin, M.B., Duarte, M.F., Sarvotham, S., Baraniuk, R.G.: Distributed compressed sensing. IEEE T. Info. Theory 52(12), 5406–5425 (2006)

    Article  Google Scholar 

  3. Candès, E.J., Romberg, J., Tao, T.: Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information. IEEE T. Info. Theory 52(2), 489–509 (2006)

    Article  MathSciNet  Google Scholar 

  4. Chen, G.H., Tang, J., Leng, S.: Prior image constrained compressed sensing (PICCS): a method to accurately reconstruct dynamic CT images from highly undersampled projection data sets. Med. Phys. 35(2), 660–663 (2008)

    Article  Google Scholar 

  5. Choi, J.W., Shim, B., Ding, Y., Rao, B., Kim, D.I.: Compressed sensing for wireless communications: Useful tips and tricks. IEEE Communications Surveys & Tutorials 19(3), 1527–1550 (2017)

    Article  Google Scholar 

  6. Daei, S., Haddadi, F., Amini, A.: Exploiting prior information in block-sparse signals. IEEE T. Signal Proces. 67(19), 5093–5102 (2019)

    Article  MathSciNet  Google Scholar 

  7. Do, T.T., Chen, Y., Nguyen, D.T., Nguyen, N., Gan, L., Tran, T.D.: Distributed compressed video sensing. In: 2009 16th IEEE Int. Conf. Imag. Process. (ICIP), pp. 1393–1396. IEEE (2009)

    Google Scholar 

  8. Durgin, N., Grotheer, R., Huang, C., Li, S., Ma, A., Needell, D., Qin, J.: Jointly sparse signal recovery with prior info. Proc. 53rd Asilomar Conf. on Signals, Systems and Computers (2019)

    Google Scholar 

  9. Durgin, N., Grotheer, R., Huang, C., Li, S., Ma, A., Needell, D., Qin, J.: Sparse randomized kaczmarz for support recovery of jointly sparse corrupted multiple measurement vectors. In: Research in Data Science, pp. 1–14. Springer (2019)

    Google Scholar 

  10. Durgin, N., Grotheer, R., Huang, C., Li, S., Ma, A., Needell, D., Qin, J.: Fast hyperspectral diffuse optical imaging method with joint sparsity. In: 2019 41th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). IEEE (2019, to appear)

    Google Scholar 

  11. Eldar, Y.C., Kutyniok, G.: Compressed sensing: Theory and Applications. Cambridge University Press (2012)

    Google Scholar 

  12. Foucart, S., Rauhut, H.: A Mathematical Introduction to Compressive Sensing. Springer (2013). In press

    Google Scholar 

  13. Friedlander, M.P., Mansour, H., Saab, R., Yilmaz, Ö.: Recovering compressively sampled signals using partial support information. IEEE T. on Info. Theory 58(2), 1122–1134 (2012)

    Article  MathSciNet  Google Scholar 

  14. Giedd, J.N., Blumenthal, J., Jeffries, N.O., Castellanos, F.X., Liu, H., Zijdenbos, A., Paus, T., Evans, A.C., Rapoport, J.L.: Brain development during childhood and adolescence: a longitudinal mri study. Nature Neuroscience 2(10), 861–863 (1999)

    Article  Google Scholar 

  15. Herzet, C., Soussen, C., Idier, J., Gribonval, R.: Exact recovery conditions for sparse representations with partial support information. IEEE T. Info.Theory 59(11), 7509–7524 (2013)

    Article  MathSciNet  Google Scholar 

  16. Li, S., Yang, D., Tang, G., Wakin, M.B.: Atomic norm minimization for modal analysis from random and compressed samples. IEEE T. Signal Proces. 66(7), 1817–1831 (2018)

    Article  MathSciNet  Google Scholar 

  17. Li, Y., Chi, Y.: Off-the-grid line spectrum denoising and estimation with multiple measurement vectors. IEEE T. Signal Proces. 64(5), 1257–1269 (2016)

    Article  MathSciNet  Google Scholar 

  18. Liu, Y., Li, M., Pados, D.A.: Motion-aware decoding of compressed-sensed video. IEEE T. Circuits and Sys. for Video Tech. 23(3), 438–444 (2012)

    Article  Google Scholar 

  19. Ma, A., Zhou, Y., Rush, C., Baron, D., Needell, D.: An approximate message passing framework for side information. IEEE T. Signal Proces. 67(7), 1875–1888 (2019)

    Article  MathSciNet  Google Scholar 

  20. Ma, B., Zhang, A., Xiang, D.: A unified approach to weighted â„“ 2,1 minimization for joint sparse recovery. In: 2nd International Conference on Teaching and Computational Science. Atlantis Press (2014)

    Google Scholar 

  21. Mansour, H., Yilmaz, Ö.: Adaptive compressed sensing for video acquisition. In: 2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 3465–3468. IEEE (2012)

    Google Scholar 

  22. Mansour, H., Yilmaz, O.: A fast randomized kaczmarz algorithm for sparse solutions of consistent linear systems. arXiv preprint arXiv:1305.3803 (2013)

    Google Scholar 

  23. Mao, X., Gu, Y.: Time-varying graph signals reconstruction. In: Vertex-Frequency Analysis of Graph Signals, pp. 293–316. Springer (2019)

    Google Scholar 

  24. Mota, J.F., Deligiannis, N., Rodrigues, M.R.: Compressed sensing with prior information: Strategies, geometry, and bounds. IEEE T. Info. Theory 63(7), 4472–4496 (2017)

    Article  MathSciNet  Google Scholar 

  25. Needell, D., Saab, R., Woolf, T.: Weighted-minimization for sparse recovery under arbitrary prior information. Information and Inference: A Journal of the IMA pp. 1017–1025 (2017)

    Google Scholar 

  26. Oh, S., Hoogs, A., Perera, A., Cuntoor, N., Chen, C.C., Lee, J.T., Mukherjee, S., Aggarwal, J., Lee, H., Davis, L., et al.: A large-scale benchmark dataset for event recognition in surveillance video. In: CVPR 2011, pp. 3153–3160. IEEE (2011)

    Google Scholar 

  27. Patterson, S., Eldar, Y.C., Keidar, I.: Distributed compressed sensing for static and time-varying networks. IEEE T. Signal Proces. 62(19), 4931–4946 (2014)

    Article  MathSciNet  Google Scholar 

  28. Polania, L.F., Carrillo, R.E., Blanco-Velasco, M., Barner, K.E.: Compressed sensing based method for ecg compression. In: 2011 IEEE International Conference on Acoustics, speech and Signal Processing (ICASSP), pp. 761–764. IEEE (2011)

    Google Scholar 

  29. Polania, L.F., Carrillo, R.E., Blanco-Velasco, M., Barner, K.E.: Exploiting prior knowledge in compressed sensing wireless ecg systems. IEEE journal of Biomedical and Health Informatics 19(2), 508–519 (2015)

    Article  Google Scholar 

  30. Qin, J., Li, S., Needell, D., Ma, A., Grotheer, R., Huang, C., Durgin, N.: Stochastic greedy algorithms for multiple measurement vectors. arXiv preprint arXiv:1711.01521 (2017)

    Google Scholar 

  31. Rao, X., Lau, V.K.: Compressive sensing with prior support quality information and application to massive mimo channel estimation with temporal correlation. IEEE T. Signal Proces. 63(18), 4914–4924 (2015)

    Article  MathSciNet  Google Scholar 

  32. Rappaport, T.S., et al.: Wireless communications: principles and practice, vol. 2. prentice hall PTR New Jersey (1996)

    Google Scholar 

  33. Rodriguez, J., Giraldo, F.B.: A novel artifact reconstruction method applied to blood pressure signals. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 4864–4867. IEEE (2018)

    Google Scholar 

  34. Samsonov, A., Jung, Y., Alexander, A., Block, W.F., Field, A.S.: Mri compressed sensing via sparsifying images. In: Proc. of ISMRM, p. 342 (2008)

    Google Scholar 

  35. Schöpfer, F., Lorenz, D.A.: Linear convergence of the randomized sparse kaczmarz method. Mathematical Programming pp. 1–28 (2018)

    Google Scholar 

  36. Sezan, M.I., Stark, H.: Incorporation of a priori moment information into signal recovery and synthesis problems. J. Math. Anal. Appl. 122(1), 172–186 (1987)

    Article  MathSciNet  Google Scholar 

  37. Strohmer, T., Vershynin, R.: A randomized Kaczmarz algorithm with exponential convergence. J. Fourier Anal. Appl. 15(2), 262–278 (2009)

    Article  MathSciNet  Google Scholar 

  38. Weizman, L., Eldar, Y.C., Ben Bashat, D.: Compressed sensing for longitudinal MRI: an adaptive-weighted approach. Med. Phys. 42(9), 5195–5208 (2015)

    Article  Google Scholar 

  39. Wen, J., Yu, W.: Exact sparse signal recovery via orthogonal matching pursuit with prior information. In: 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 5003–5007. IEEE (2019)

    Google Scholar 

  40. Wu, J., Liu, F., Jiao, L., Wang, X.: Multivariate pursuit image reconstruction using prior information beyond sparsity. Signal Processing 93(6), 1662–1672 (2013)

    Article  Google Scholar 

  41. Ye, F., Luo, H., Cheng, J., Lu, S., Zhang, L.: A two-tier data dissemination model for large-scale wireless sensor networks. In: Proceedings of the 8th Annual International Conference on Mobile Computing and Networking, pp. 148–159. ACM (2002)

    Google Scholar 

  42. Zheng, C., Li, G., Xia, X.G., Wang, X.: Weighted ℓ 2,1 minimisation for high resolution range profile with stepped frequency radar. Electronics Letters 48(18), 1155–1156 (2012)

    Article  Google Scholar 

  43. Ziniel, J., Schniter, P.: Dynamic compressive sensing of time-varying signals via approximate message passing. arXiv preprint arXiv:1205.4080 (2012)

    Google Scholar 

Download references

Acknowledgements

Shuang Li was supported by NSF CAREER CCF #1149225. Deanna Needell was partially supported by NSF CAREER DMS #1348721, NSF DMS #2011140, and NSF BIGDATA #1740325. Jing Qin was supported by the NSF DMS #1941197.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rachel Grotheer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Authors and the Association for Women in Mathematics

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Durgin, N. et al. (2021). A Simple Recovery Framework for Signals with Time-Varying Sparse Support. In: Demir, I., Lou, Y., Wang, X., Welker, K. (eds) Advances in Data Science. Association for Women in Mathematics Series, vol 26. Springer, Cham. https://doi.org/10.1007/978-3-030-79891-8_9

Download citation

Publish with us

Policies and ethics