Skip to main content

GaN-Based Lateral and Vertical Devices

  • Chapter
  • First Online:
Springer Handbook of Semiconductor Devices

Abstract

In the last decade, GaN has emerged as an excellent material for application in power electronics. The wide energy gap of gallium nitride (3.4 eV) enables high-temperature operation, while the large breakdown field (3.3 MV/cm, 11 times higher than silicon) allows to reach kV-range operation while maintaining a low on-resistance. Thanks to the high mobility of the two-dimensional electron gas at the AlGaN/GaN interface, lateral GaN transistors have a very low on-resistance; commercial products are already on the market, and new technologies are being developed, targeting the 650 V/900 V ranges. Recently, the attention toward vertical GaN transistors has constantly increased: a vertical layout allows to substantially increase current density while taking advantage of the wide bandgap and high breakdown field of GaN. Vertical transistors based on GaN are expected to find application in converters with medium high power levels (>5 to 10 kW), once the technology reaches maturity.

This chapter reviews the main properties of GaN-based materials and devices. The first part focuses on the main challenges related to the growth of high-quality GaN epitaxial stacks. The second and the third parts focus on GaN lateral and vertical devices, respectively. Finally, the fourth section describes the trapping and degradation processes that limit the performance and the reliability of GaN transistors, and the related physical mechanisms. This chapter represents an ideal guide for a reader willing to enter the world of GaN devices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 309.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 399.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nakamura, S.: InGaN-based multi-quantum-well-structure laser diodes. Jpn. J. Appl. Phys. 35(1B), 74–76 (1996)

    Article  Google Scholar 

  2. Miller, D., et al.: Band-edge electroabsorption in quantum well structures: the quantum-confined stark effect. Phys. Rev. Lett. 53, 2173 (1984)

    Article  Google Scholar 

  3. Ambacher, O., et al.: Two dimensional electron gases induced by spontaneous and piezoelectric polarization in undoped and doped {AlGaN/GaN} heterostructures. J. Appl. Phys. 87(1), 334–344 (2000)

    Article  Google Scholar 

  4. Ueda, T., Ishida, M., Masaaki, Y.: Separation of thin GaN from sapphire by laser lift-off technique. Jpn. J. Appl. Phys. 50(4R) (2011)

    Google Scholar 

  5. El-Masry, N., Piner, E., Liu, S.X.: Phase separation in InGaN grown by metalorganic chemical vapor deposition. Appl. Phys. Lett. 72(40) (1998)

    Google Scholar 

  6. Augustine, G., Balakrishna, V., Brandt, C.D.: Growth and characterization of high-purity SiC single crystals. J. Cryst. Growth. 211(1–4), 339–342 (2000)

    Article  Google Scholar 

  7. Dadgar, A.: MOVPE growth of GaN on Si – substrates and strain. Thin Solid Films. 515(10), 4356–4361 (2007)

    Article  Google Scholar 

  8. Dadgar, A., et al.: In situ measurements of strains and stresses in GaN heteroepitaxy and its impact on growth temperature. J. Cryst. Growth. 272(1–4), 72–75 (2004)

    Article  Google Scholar 

  9. Moens, P., et al.: Impact of buffer leakage on intrinsic reliability of 650V AlGaN/GaN HEMTs. In: Technical Digest – International Electron Devices Meeting, IEDM, vol. 2016-Feb (2015)

    Google Scholar 

  10. Uren, M.J., et al.: ‘Leaky dielectric’ model for the suppression of dynamic R ON in carbon-doped. IEEE Trans. Electron Devices. 64(7), 2826–2834 (2017)

    Article  Google Scholar 

  11. Verzellesi, G., et al.: Influence of buffer carbon doping on pulse and AC behavior of insulated-gate field-plated power AlGaN/GaN HEMTs. IEEE Electron Device Lett. 35(4), 443–445 (2014)

    Article  Google Scholar 

  12. Bahat-Treidel, E., Hilt, O., Brunner, F., Würfl, J., Tränkle, G.: Punchthrough-voltage enhancement of AlGaN/GaN HEMTs using AlGaN double-heterojunction confinement. IEEE Trans. Electron Devices. 55(12), 3354–3359 (2008)

    Article  Google Scholar 

  13. Visalli, D., et al.: High breakdown voltage in AlGaN/GaN/AlGaN double heterostructures grown on 4 inch Si substrates. Phys. Status Solidi (c). 6(Suppl. 2) (2009)

    Google Scholar 

  14. Micovic, M., et al.: GaN DHFETs having 48% power added efficiency and 57% drain efficiency at V-band. IEEE Electron Device Lett. 38(12), 1708–1711 (2017)

    Article  Google Scholar 

  15. Liu, W., Balandin, A.A.: Thermal conduction in AlxGa1−xN alloys and thin films. J. Appl. Phys. 97, 073710 (2005)

    Article  Google Scholar 

  16. Axelsson, O., et al.: Application relevant evaluation of trapping effects in AlGaN/GaN HEMTs with Fe-doped buffer. IEEE Trans. Electron Devices. 63(1), 326–332 (2016)

    Article  MathSciNet  Google Scholar 

  17. Pecheux, R.: Importance of buffer configuration in GaN HEMTs for high microwave power performance and robustness. In: 47th European Solid-State Device Research Conference, pp. 228–231 (2017)

    Google Scholar 

  18. Donghyun, J., del Alamo, J.A.: Mechanisms responsible for dynamic ON-resistance in GaN high-voltage HEMTs. In: Power Semiconductor Devices and ICs (ISPSD), 2012 24th International Symposium, No. June, pp. 333–336 (2012)

    Google Scholar 

  19. Uemoto, Y., et al.: A normally-off AlGaN/GaN transistor with R on A = 2. 6m Ω cm 2 and BV ds = 640V using conductivity modulation. In: IEEE Electron Devices Meeting, pp. 1–4 (2006)

    Google Scholar 

  20. Frank, F., Van der Merwe, J.: One dimensional dislocations. II. Misfitting monolayers and oriented overgrowth. Proc. R. Soc. Lond. Ser. A. 198, 216–225 (1949)

    Article  MATH  Google Scholar 

  21. Matthews, J.: Coherent interfaces and misfit dislocations. In: Epitaxial Growth, pp. 559–609 (1975)

    Chapter  Google Scholar 

  22. Jain, S., Willander, M., Van Overstraeten, R.: Compound Semiconductors Strained Layers and Devices. Springer, Boston (2000)

    Book  Google Scholar 

  23. Cheng, K.: Formation of V-grooves on the (Al, Ga) N surface as means of tensile stress relaxation. J. Cryst. Growth. 353, 88–94 (2012)

    Article  Google Scholar 

  24. Derluyn, J., et al.: Improvement of AlGaN∕GaN high electron mobility transistor structures by in situ deposition of a Si[sub 3]N[sub 4] surface layer. J. Appl. Phys. 98(5), 054501 (2005)

    Article  Google Scholar 

  25. Ibbetson, J.P., Fini, P.T., Ness, K.D., DenBaars, S.P., Speck, J.S., Mishra, U.K.: Polarization effects, surface states, and the source of electrons in AlGaN/GaN heterostructure field effect transistors. Appl. Phys. Lett. 77(2), 250 (2000)

    Article  Google Scholar 

  26. Medjdoub, F., Zegaoui, M., Waldhoff, N., Grimbert, B., Rolland, N., Rolland, P.: Above 600 mS/mm transconductance with 2.3 A/mm drain current density AlN/GaN high electron mobility transistors grown on silicon. Appl. Phys. Express. 4(6), 064106 (2011). https://doi.org/10.1143/APEX.4.064106

  27. Joh, J., Del Alamo, J.A.: Impact of gate placement on RF power degradation in GaN high electron mobility transistors. Microelectron. Reliab. 52(1), 33–38 (2012)

    Article  Google Scholar 

  28. Kohn, E., Medjdoub, F.: InAlN – A New Barrier Material for GaN-based HEMTs. International Workshop on Physics of Semiconductor Devices, vol. 6, pp. 311–316 (2007). https://doi.org/10.1109/IWPSD.2007.4472506

  29. Medjdoub, F., et al.: High electron mobility in high-polarization sub-10nm barrier thickness InAlGaN/GaN heterostructure. Appl. Phys. Express. 8(10), 8–11 (2015)

    Article  Google Scholar 

  30. Moram, M.A., Zhang, S.: ScGaN and ScAlN: emerging nitride materials. J. Mater. Chem. A. 2(17), 6042–6050 (2014)

    Article  Google Scholar 

  31. Hardy, M.: Epitaxial ScAlN grown by molecular beam epitaxy on GaN and SiC substrates. Appl. Phys. Lett. 110, 162104 (2017)

    Article  Google Scholar 

  32. Mishra, U.K.: Measured microwave power performance. IEEE Electron Device Lett. 17(9), 455–457 (1996)

    Article  Google Scholar 

  33. Medjdoub, F., Zegaoui, M., Rolland, N., Rolland, P.A.: Demonstration of low leakage current and high polarization in ultrathin AlN/GaN high electron mobility transistors grown on silicon substrate. Appl. Phys. Lett. 98(March 2014), 1–4 (2011)

    Google Scholar 

  34. Medjdoub, F., et al.: Barrier-layer scaling of InAlN/GaN HEMTs. IEEE Electron Device Lett. 29(5), 422–425 (2008)

    Article  Google Scholar 

  35. Balmer, R.S., et al.: AlGaN/GaN microwave HFET including a thin AlN carrier exclusion layer. Phys. Status Solidi (c). 2334(7), 2331–2334 (2003)

    Article  Google Scholar 

  36. Cordier, Y., et al.: Structural and electrical properties of AlGaN/GaN HEMTs grown by MBE on SiC, Si(1 1 1) and GaN templates. J. Cryst. Growth. 278(1–4), 383–386 (2005)

    Article  Google Scholar 

  37. Mishra, U.K., Parikh, P., Wu, Y.: AlGaN/GaN HEMTs – an overview of device operation and applications. Proc. IEEE. 90(6), 1022–1031 (2002)

    Article  Google Scholar 

  38. Medjdoub, F., Zegaoui, M., Grimbert, B., Ducatteau, D., Rolland, N., Rolland, P.A.: First demonstration of high-power GaN-on-silicon transistors at 40 GHz. IEEE Electron Device Lett. 33(8), 1168–1170 (2012)

    Article  Google Scholar 

  39. Wang, X.W., Zhang, N.-Q., Moran, B., DenBaars, S.P., Mishra, U.K.: Kilovolt AlGaN/GaN HEMTs as switching devices. Phys. Status Solidi (a). 188(1), 213–217 (2001)

    Article  Google Scholar 

  40. Algan, T., et al.: The 1.6-kV AlGaN/GaN HFETs. IEEE Electron Device Lett. 27(9), 716–718 (2006)

    Article  Google Scholar 

  41. Dora, Y., Chakraborty, A., Mccarthy, L., Keller, S., Denbaars, S.P., Mishra, U.K.: High breakdown voltage achieved on AlGaN/GaN HEMTs with integrated slant field plates. 27(9), 713–715 (2006)

    Google Scholar 

  42. Fu, K., Tsang, Y.L.: On the punchthrough phenomenon in submicron MOS transistors. IEEE Trans. Electron Devices. 44(5), 847–855 (1997)

    Article  Google Scholar 

  43. Seo, K.-S., Choi, W., Seok, O., Ryu, H., Cha, H.-Y.: High-voltage and low-leakage-current gate recessed normally-off GaN MIS-HEMTs. IEEE Electron Device Lett. 35(2), 2013–2015 (2014)

    Google Scholar 

  44. Kato, S., Satoh, Y., Sasaki, H., Masayuki, I., Yoshida, S.: C-doped GaN buffer layers with high breakdown voltages for high-power operation AlGaN/GaN HFETs on 4-in Si substrates by MOVPE. J. Cryst. Growth. 298, 831–834 (2007)

    Article  Google Scholar 

  45. Choi, Y.C., Pophristic, M., Spencer, M.G., Eastman, L.F.: High breakdown voltage C-doped GaN-on-sapphire HFETs with a low specific on-resistance. APEC. 07, 1264–1267 (2007)

    Google Scholar 

  46. Medjdoub, F., Zegaoui, M., Grimbert, B., Rolland, N., Rolland, P.-A.: Effects of AlGaN back barrier on AlN/GaN-on-silicon high-electron-mobility transistors. Appl. Phys. Express. 4(12), 124101 (2011)

    Article  Google Scholar 

  47. Ikeda, B.N., et al.: GaN power transistors on Si substrates for switching applications. 98(7), 1151–1161 (2010)

    Google Scholar 

  48. Umeda, H., et al.: Blocking-voltage boosting technology for GaN transistors by widening depletion layer in Si substrates. Tech. Dig. - Int. Electron Devices Meet. IEDM, pp. 480–483 (2010). https://doi.org/10.1109/IEDM.2010.5703400

  49. Srivastava, P., et al.: Silicon substrate removal of GaN DHFETs for enhanced (>1100 V) breakdown voltage. IEEE Electron Device Lett. 31(8), 851–853 (2010)

    Article  Google Scholar 

  50. Lu, B., Member, S., Palacios, T.: High breakdown (>1500 V) AlGaN/GaN HEMTs by substrate-transfer technology. IEEE Electron Device Lett. 31(9), 951–953 (2010)

    Article  Google Scholar 

  51. Henry, R.L., Klein, P.B., Binari, S.C., Ikossi, K., Wickenden, A.E., Koleske, D.D.: Current collapse induced in AlGaN/GaN high-electron-mobility transistors by bias stress current collapse induced in AlGaN/GaN high-electron-mobility. Appl. Phys. Express. August (2003)

    Google Scholar 

  52. Binari, S.C., et al.: Trapping effects and microwave power performance in AlGaN/GaN HEMTs. IEEE Trans. Electron Devices. 48(3), 465–471 (2001)

    Article  Google Scholar 

  53. Vetury, R., Zhang, N.Q., Keller, S., Mishra, U.K.: The impact of surface states on the DC and RF characteristics of AlGaN/GaN HFETs. IEEE Trans. Electron Devices. 48(3), 560–566 (2001)

    Article  Google Scholar 

  54. ALLOS, allos-semiconductor.com

  55. Dogmus, E., Zegaoui, M., Medjdoub, F.: GaN-on-silicon high-electron-mobility transistor technology with ultra-low leakage up to 3000V using local substrate removal and AlN ultra-wide bandgap. Appl. Phys. Express. 11, 3–7 (2018)

    Article  Google Scholar 

  56. Ťapajna, M., Kuzmík, J.: Control of threshold voltage in GaN based metal–oxide–semiconductor high-electron mobility transistors towards the normally-off operation. Jpn. J. Appl. Phys. 52(8S), 08JN08 (Aug. 2013)

    Article  Google Scholar 

  57. Cai, Y., Zhou, Y., Lau, K.M., Chen, K.J.: Control of threshold voltage of AlGaN/GaN HEMTs by fluoride-based plasma treatment: from depletion mode to enhancement mode. IEEE Trans. Electron Devices, 53(9), 2207–2215 (2006). https://doi.org/10.1109/TED.2006.881054

  58. Lorenz, A., et al.: Influence of thermal anneal steps on the current collapse of fluorine treated enhancement mode SiN/AlGaN/GaN HEMTs. Phys. Status Solidi (c). 6(Suppl. 2), S996–S998 (2009)

    MathSciNet  Google Scholar 

  59. Huang, X., Li, Q., Liu, Z., Lee, F.C.: Analytical loss model of high voltage GaN HEMT in cascode configuration. IEEE Trans. Power Electron. 29(5), 2208–2219 (2014)

    Article  Google Scholar 

  60. Uemoto, Y., et al.: A normally-off AlGaN/GaN transistor with R on A = 2.6m Ω cm 2 and BV ds = 640V using conductivity modulation. In: International Electron Devices Meeting, pp. 1–4 (2006). https://doi.org/10.1109/IEDM.2006.346930

  61. Greco, G., Iucolano, F., Roccaforte, F.: Review of technology for normally-o ff HEMTs with p-GaN gate. Mater. Sci. Semicond. Process. 78(October 2017), 96–106 (2018)

    Article  Google Scholar 

  62. Hwang, I., et al.: 1.6kV, 2.9 mΩ cm 2 normally-off p-GaN HEMT device. In: Proceedings of the International Symposium on Power Semiconductor Devices and ICs, June, pp. 41–44 (2012)

    Google Scholar 

  63. Chowdhury, S., Ji, D.: Vertical GaN Transistors for Power Electronics. Integrated circuits and systems, Springer. pp. 51–74 (2018). https://doi.org/10.1007/978-3-319-77994-2_3

  64. Ji, D., Yue, Y., Gao, J., Chowdhury, S.: Dynamic modeling and power loss analysis of high-frequency power switches based on GaN CAVET. IEEE Trans. Electron Devices. 63(10), 4011–4017 (2016)

    Article  Google Scholar 

  65. Ambacher, O., Smart, J., Shealy, J.R., Weimann, N.G., Chu, K., Murphy, M.: Two-dimensional electron gases induced by spontaneous and piezoelectric polarization charges in N- and Ga-face AlGaN/GaN heterostructures. J. Appl. Phys. 85(6), 3222–3233 (1999)

    Article  Google Scholar 

  66. Sabui, G., Parbrook, P.J., Arredondo-Arechavala, M., Shen, Z.J.: Modeling and simulation of bulk gallium nitride power semiconductor devices. AIP Adv. 6(5), 055006 (2016)

    Article  Google Scholar 

  67. Farahmand, M., et al..: Monte Carlo Simulation of Electron Transport in the III-Nitride Wurtzite Phase Materials System: Binaries and Ternaries, IEEE Trans. Electron Devices. 48(3), 535--542 (2001). https://doi.org/10.1109/16.906448

  68. Schwierz, F.: An electron mobility model for wurtzite GaN. Solid State Electron. 49(6), 889–895 (2005)

    Article  Google Scholar 

  69. Ben-Yaacov, I., Seck, Y.-K., Mishra, U.K., DenBaars, S.P.: AlGaN/GaN current aperture vertical electron transistors with regrown channels. J. Appl. Phys. 95(4), 2073–2078 (2004)

    Article  Google Scholar 

  70. Chowdhury, S., Swenson, B.L., Mishra, U.K.: Enhancement and depletion mode AlGaN/GaN CAVET with Mg-ion-implanted GaN as current blocking layer. IEEE Electron Device Lett. 29(6), 543–545 (2008)

    Article  Google Scholar 

  71. Chowdhury, S., Wong, M.H., Swenson, B.L., Mishra, U.K.: CAVET on bulk GaN substrates achieved with MBE-regrown AlGaN/GaN layers to suppress dispersion. IEEE Electron Device Lett. 33(1), 41–43 (2012)

    Article  Google Scholar 

  72. Nie, H., et al.: 1.5-kV and 2.2-mΩ-cm2 vertical GaN transistors on bulk-GaN substrates. IEEE Electron Device Lett. 35(9), 939–941 (2014)

    Article  Google Scholar 

  73. Chowdhury, S., Swenson, B.L., Wong, M.H., Mishra, U.K.: Current status and scope of gallium nitride-based vertical transistors for high-power electronics application. Semicond. Sci. Technol. 28(7), 074014 (2013)

    Article  Google Scholar 

  74. Chowdhury, S., Swenson, B.L., Lu, J., Mishra, U.K.: Use of sub-nanometer thick AlN to arrest diffusion of ion-implanted Mg into regrown AlGaN/GaN layers. Jpn. J. Appl. Phys. 50(10 Part 1), 101002 (2011)

    Article  Google Scholar 

  75. Ji, D., et al.: Normally off trench CAVET with active mg-doped GaN as current blocking layer. IEEE Trans. Electron Devices. 64(3), 805–808 (2017)

    Article  Google Scholar 

  76. Ji, D., Agarwal, A., Li, H., Li, W., Keller, S., Chowdhury, S.: 880 V/2.7 mΩ cm2 MIS gate trench CAVET on bulk GaN substrates. IEEE Electron Device Lett. 39(6), 863–865 (2018)

    Article  Google Scholar 

  77. Shibata, D., et al.: 1.7 kV/1.0 mΩcm2 normally-off vertical GaN transistor on GaN substrate with regrown p-GaN/AlGaN/GaN semipolar gate structure. In: Technical Digest – International Electron Devices Meeting, IEDM, pp. 10.1.1–10.1.4 (2017)

    Google Scholar 

  78. Otake, H., Egami, S., Ohta, H., Nanishi, Y., Takasu, H.: GaN-based trench gate metal oxide semiconductor field effect transistors with over 100cm2/(Vs) channel mobility. Jpn. J. Appl. Phys. Part 2 Lett. 46(25–28), L599 (2007)

    Article  Google Scholar 

  79. Oka, T., Ueno, Y., Ina, T., Hasegawa, K.: Vertical GaN-based trench metal oxide semiconductor field-effect transistors on a free-standing GaN substrate with blocking voltage of 1.6 kV. Appl. Phys. Express. 7(2), 021002 (2014)

    Article  Google Scholar 

  80. Gupta, C., Chan, S.H., Enatsu, Y., Agarwal, A., Keller, S., Mishra, U.K.: OG-FET: an in-situ oxide, GaN interlayer-based vertical trench MOSFET. IEEE Electron Device Lett. 37(12), 1601–1604 (2016)

    Article  Google Scholar 

  81. Gupta, C., et al.: In situ oxide, GaN interlayer-based vertical trench MOSFET (OG-FET) on bulk GaN substrates. IEEE Electron Device Lett. 38(3), 353–355 (2017)

    Article  Google Scholar 

  82. Ji, D., et al.: Demonstrating >1.4 kV OG-FET performance with a novel double field-plated geometry and the successful scaling of large-area devices. In: Technical Digest – International Electron Devices Meeting, IEDM, pp. 9.4.1–9.4.4, (2018). https://doi.org/10.1109/IEDM.2017.8268359

  83. Nishizawa, J., Terasaki, T., Shibata, J.: Field-effect transistor versus analog transistor (static induction transistor). IEEE Trans. Electron Devices. 22(4), 185–197 (1975)

    Article  Google Scholar 

  84. Mochida, Y., Nishizawa, J.I., Ohmi, T., Gupta, R.K.: Characteristics of static induction transistors: effects of series resistance. IEEE Trans. Electron Devices. 25(7), 761–767 (1978)

    Article  Google Scholar 

  85. Choi, Y.C., Cha, H.Y., Eastman, L.F., Spencer, M.G.: Design optimization of 600 V SiC SITs for high power and high frequency operation. Semicond. Sci. Technol. 20(2), 193–201 (2005)

    Article  Google Scholar 

  86. Tanaka, Y., et al.: 700-V 1.0-mΩ · cm2 buried gate SiC-SIT (SiC-BGSIT). IEEE Electron Device Lett. 27(11), 908–910 (2006)

    Article  Google Scholar 

  87. Li, W., Ji, D., Tanaka, R., Mandal, S., Laurent, M., Chowdhury, S.: Demonstration of GaN static induction transistor (SIT) using self-aligned process. IEEE J. Electron Devices Soc. 5(6), 485–490 (2017)

    Article  Google Scholar 

  88. Chun, J., Li, W., Agarwal, A., Chowdhury, S.: Schottky junction vertical channel GaN static induction transistor with a sub-micrometer fin width. Adv. Electron. Mater. 5(1), 1800689 (2019). https://doi.org/10.1002/aelm.201800689

  89. GS66516T Top-side cooled 650 V E-mode GaN transistor Preliminary Datasheet, pp. 1–17. https://www.mouser.com/ds/2/692/GS66516T%20DS%20Rev%20170413-1113827.pdf (2018)

  90. Meneghini, M., Hilt, O., Wuerfl, J., Meneghesso, G.: Technology and reliability of normally-off GaN HEMTs with p-type gate. Energies. 10(2), 153 (2017)

    Article  Google Scholar 

  91. Herbecq, N., et al.: 1900V, 1.6mOhm cm2 AlN/GaN-on-Si power devices realized by local substrate removal. Appl. Phys. Express. 7, 034103 (2014)

    Article  Google Scholar 

  92. Maier, D., et al.: Testing the temperature limits of GaN-based HEMT devices. IEEE Trans. Device Mater. Reliab. 10(4), 427–436 (2010)

    Article  Google Scholar 

  93. Bisi, D., et al.: Deep-level characterization in GaN HEMTs-part I: advantages and limitations of drain current transient measurements. IEEE Trans. Electron Devices. 60(10), 3166 (2013)

    Article  Google Scholar 

  94. Umana-Membreno, G.A., et al.: [sup 60]Co gamma-irradiation-induced defects in n-GaN. Appl. Phys. Lett. 80(23), 4354 (2002)

    Article  Google Scholar 

  95. Soh, C.B., Chua, S.J., Lim, H.F., Chi, D.Z., Liu, W., Tripathy, S.: Identification of deep levels in GaN associated with dislocations. J. Phys. Condens. Matter. 16(34), 6305–6315 (2004)

    Article  Google Scholar 

  96. Cho, H.K., Kim, K.S., Hong, C.H., Lee, H.J.: Electron traps and growth rate of buffer layers in unintentionally doped GaN. J. Cryst. Growth. 223(1–2), 38–42 (2001)

    Article  Google Scholar 

  97. Johnstone, D.K., Ahoujja, M., Yeo, Y.K., Hengehold, R.L., Guido, L.: Deep centers and their capture barriers in MOCVD-grown GaN. Prog. Semicond. Mater. Optoelectron. Appl. 692, 73–83 (2002)

    Google Scholar 

  98. Jiang, X.H., et al.: Reduction of the Mg acceptor activation energy in GaN, AlN, Al0.83Ga0.17N and MgGaδ-doping (AlN)5/(GaN)1: the strain effect. J. Phys. D. Appl. Phys. 48(47) (2015)

    Google Scholar 

  99. Cho, H.K., Kim, C.S., Hong, C.H.: Electron capture behaviors of deep level traps in unintentionally doped and intentionally doped n-type GaN. J. Appl. Phys. 94(3), 1485–1489 (2003)

    Article  Google Scholar 

  100. Umana-Membreno, G.A., Parish, G., Fichtenbaum, N., Keller, S., Mishra, U.K., Nener, B.D.: Electrically active defects in GaN layers grown with and without Fe-doped buffers by metal-organic chemical vapor deposition. J. Electron. Mater. 37(5), 569–572 (2008)

    Article  Google Scholar 

  101. Petrus, M., Nemec, M., Harmatha, L., Paskiewicz, R., Tlaczala, M., Technology, I.: Investigation of deep energy levels in heterostructures based on GaN by DLTS. IEEE, pp. 8–11, 2010

    Google Scholar 

  102. Ashraf, H., Arshad, M.I., Faraz, S.M., Wahab, Q., Hageman, P.R., Asghar, M.: Study of electric field enhanced emission rates of an electron trap in n-type GaN grown by hydride vapor phase epitaxy. J. Appl. Phys. 108(10), 103708 (2010)

    Article  Google Scholar 

  103. Arehart, A.R., et al.: Comparison of deep level incorporation in ammonia and rf-plasma assisted molecular beam epitaxy n-GaN films. Phys. Status Solidi (c). 5(6), 1750–1752 (2008)

    Article  Google Scholar 

  104. Silvestri, M., Uren, M.J., Kuball, M.: Iron-induced deep-level acceptor center in GaN/AlGaN high electron mobility transistors: Energy level and cross section. Appl. Phys. Lett. 102(7), 073501 (2013). https://doi.org/10.1063/1.4793196

  105. Meneghini, M., et al.: Buffer traps in Fe-doped AlGaN/GaN HEMTs: investigation of the physical properties based on pulsed and transient measurements. IEEE Trans. Electron Devices. 61(12), 4070 (2014)

    Article  Google Scholar 

  106. Reshchikov, M.A., McNamara, J.D., Helava, H., Usikov, A., Makarov, Y.: Two yellow luminescence bands in undoped GaN. Sci. Rep. 8:8091(1), 1–11 (2018)

    Google Scholar 

  107. Polyakov, A.Y., Smirnov, N.B., Govorkov, A.V., Shlensky, A.A., Pearton, S.J.: Influence of high-temperature annealing on the properties of Fe doped semi-insulating GaN structures. J. Appl. Phys. 95(10), 5591–5596 (2004)

    Article  Google Scholar 

  108. Calleja, E., et al.: Yellow luminescence and related deep states in undoped GaN. Phys. Rev. B. 55(7), 4689–4694 (1997)

    Article  Google Scholar 

  109. Christenson, S.G., Xie, W., Sun, Y.Y., Zhang, S.B.: Carbon as a source for yellow luminescence in GaN: isolated CN defect or its complexes. J. Appl. Phys. 118, 135708 (2015)

    Article  Google Scholar 

  110. Moens, P., et al.: On the impact of carbon-doping on the dynamic Ron and off-state leakage current of 650V GaN power devices. In: Proceedings of the 27th International Symposium on Power Semiconductor Devices and IC’s, pp. 37–40 (2015)

    Google Scholar 

  111. Venturi, G., et al.: Dislocation-related trap levels in nitride-based light emitting diodes. Appl. Phys. Lett. 104(21), 211102 (2014)

    Article  Google Scholar 

  112. Monti, D., et al.: Impact of dislocations on DLTS spectra and degradation of InGaN-based laser diodes. Microelectron. Reliab. 88–90, 864–867 (2018)

    Article  Google Scholar 

  113. Meneghesso, G., et al.: Reliability and parasitic issues in GaN-based power HEMTs: a review. Semicond. Sci. Technol. 31(9), 093004 (2016)

    Article  Google Scholar 

  114. Lagger, P., Ostermaier, C., Pogany, D.: Enhancement of Vth drift for repetitive gate stress pulses due to charge feedback effect in GaN MIS-HEMTs. In: 2014 IEEE International Reliability Physics Symposium, pp. 6C.3.1–6C.3.6 (2014)

    Google Scholar 

  115. Ostermaier, C., et al.: Dynamics of carrier transport via AlGaN barrier in AlGaN/GaN MIS-HEMTs. Appl. Phys. Lett. 173502, 1–5 (2017)

    Google Scholar 

  116. Guo, A., del Alamo, J.A.: Negative-bias temperature instability of GaN MOSFETs. In: 2016 IEEE International Reliability Physics Symposium (IRPS), pp. 4A–1 (2016)

    Google Scholar 

  117. Wu, T., et al.: The impact of the gate dielectric quality in developing Au-free D-mode and E-mode recessed gate AlGaN/GaN transistors on a 200mm Si substrate. In: Proceedings of the 27th International Symposium on Power Semiconductor Devices and IC’s, pp. 225–228 (2015)

    Google Scholar 

  118. Tallarico, A.N., et al.: PBTI in GaN-HEMTs with p-type gate: role of the aluminum content on VTH and underlying degradation mechanisms. IEEE Trans. Electron Devices. 65(1), 38–44 (2018)

    Article  Google Scholar 

  119. Meneghini, M., et al.: Time-and field-dependent trapping in GaN-based enhancement-mode transistors with p-gate. IEEE Electron Device Lett. 33(3), 375–377 (2012)

    Article  Google Scholar 

  120. Joh, J., Alamo, J.A.: A current-transient methodology for trap analysis for GaN high electron mobility transistors. IEEE Trans. Electron Devices. 58(1), 132–140 (2011)

    Article  Google Scholar 

  121. Meneghesso, G., et al.: GaN-based power HEMTs: parasitic, reliability and high field issues. ECS Trans. 58(4) (2013)

    Google Scholar 

  122. Meneghini, M., et al.: Investigation of trapping and hot-electron effects in GaN HEMTs by means of a combined electrooptical method. IEEE Trans. Electron Devices. 58(9) (2011)

    Google Scholar 

  123. Chen, K.J., et al.: GaN-on-Si power technology: devices and applications. IEEE Trans. Electron Devices. 64(3), 779–795 (2017)

    Article  Google Scholar 

  124. Nakajima, A., Nishizawa, S., Gan, H.: GaN-based monolithic power integrated circuit technology with wide operating temperature on polarization-junction platform. In: Proceedings of the 27th International Symposium on Power Semiconductor Devices & IC’s, pp. 357–360 (2015)

    Google Scholar 

  125. Bisi, D., et al.: High-voltage double-pulsed measurement system for GaN-based power HEMTs. Proceedings of the IEEE International Reliability Physics Symposium, CD.11 (2014)

    Google Scholar 

  126. Meneghini, M., Tajalli, A., Moens, P., Banerjee, A., Zanoni, E.: Materials science in semiconductor processing trapping phenomena and degradation mechanisms in GaN-based power HEMTs. Mater. Sci. Semicond. Process. 78(October 2017), 118–126 (2018). https://doi.org/10.1016/j.mssp.2017.10.009

  127. Omling, P., Weber, E.R., Montelius, L., Alexander, H., Michel, J.: Electrical properties of dislocations and point defects in plastically deformed silicon. Phys. Rev. B. 32(10), 6571–6581 (1985)

    Article  Google Scholar 

  128. Kirchner, P.D., Schaff, W.J., Maracas, G.N., Eastman, L.F., Chappell, T.I., Ransom, C.M.: The analysis of exponential and nonexponential transients in deep-level transient spectroscopy. J. Appl. Phys. 52(11), 6462–6470 (1981)

    Article  Google Scholar 

  129. Omling, P., Samuelson, L., Grimmeiss, H.G.: Deep level transient spectroscopy evaluation of nonexponential transients in semiconductor alloys. J. Appl. Phys. 54(9), 5117–5122 (1983)

    Article  Google Scholar 

  130. Hasegawa, H., Akazawa, M.: Current collapse transient behavior and its mechanism in submicron-gate AlGaN∕GaN heterostructure transistors. J. Vac. Sci. Technol. B Microelectron. Nanometer Struct. 27(2009), 2048 (2009)

    Article  Google Scholar 

  131. Meneghesso, G., et al.: Trapping phenomena in AlGaN/GaN HEMTs: a study based on pulsed and transient measurements. Semicond. Sci. Technol. 28(7), 074021 (2013)

    Article  Google Scholar 

  132. Mitrofanov, O., Manfra, M.: Poole-Frenkel electron emission from the traps in AlGaN/GaN transistors. J. Appl. Phys. 95(11 I), 6414–6419 (2004)

    Article  Google Scholar 

  133. Chini, A., Soci, F., Meneghini, M., Meneghesso, G., Zanoni, E.: Deep levels characterization in GaN HEMTs - part II: experimental and numerical evaluation of self-heating effects on the extraction of traps activation energy. IEEE Trans. Electron Devices. 60(10), 3176 (2013)

    Article  Google Scholar 

  134. Joh, J., Del Alamo, J.A., Chowdhury, U., Chou, T.M., Tserng, H.Q., Jimenez, J.L.: Measurement of channel temperature in GaN high-electron mobility transistors. IEEE Trans. Electron Devices. 56(12), 2895–2901 (2009)

    Article  Google Scholar 

  135. Lyons, J.L., Janotti, A., Van De Walle, C.G.: Carbon impurities and the yellow luminescence in GaN. Appl. Phys. Lett. 97(15), 152108 (2010). https://doi.org/10.1063/1.3492841

  136. Honda, U., Yamada, Y., Tokuda, Y., Shiojima, K.: Deep levels in n-GaN doped with carbon studied by deep level and minority carrier transient spectroscopies. Jpn. J. Appl. Phys. 51(4 Part 2), 3–6 (2012)

    Google Scholar 

  137. Moens, P., et al.: Impact of buffer leakage on intrinsic reliability of 650V AlGaN/GaN HEMTs. In: Technical Digest – International Electron Devices Meeting, IEDM, vol. 35.2.1 (2015)

    Google Scholar 

  138. Rossetto, I., et al.: Evidence of hot-electron effects during hard switching of AlGaN/GaN HEMTs. IEEE Trans. Electron Devices. 64(9), 3734 (2017)

    Article  Google Scholar 

  139. Sayadi, L., Iannaccone, G., Sicre, S., Häberlen, O., Curatola, G.: Threshold voltage instability in p-GaN gate AlGaN/GaN HFETs. IEEE Trans. Electron Devices. 65(6), 2454 (2018)

    Article  Google Scholar 

  140. Tajalli, A., et al.: Microelectronics reliability impact of sidewall etching on the dynamic performance of GaN-on-Si E- mode transistors. Microelectron. Reliab. 88–90(June), 572–576 (2018)

    Article  Google Scholar 

  141. Fabris, E., et al.: Degradation of GaN-on-GaN vertical diodes submitted to high current stress. Microelectron. Reliab. 90(June), 568–571 (2018)

    Article  Google Scholar 

  142. Ruzzarin, M., et al.: Degradation of vertical GaN-on-GaN fin transistors_ step-stress and constant voltage experiments. Microelectron. Reliab. 88–90(June), 620–626 (2018)

    Article  Google Scholar 

  143. Ruzzarin, M., et al.: Degradation of vertical GaN FETs under gate and drain stress. In: IEEE International Reliability Physics Symposium Proceedings, pp. 4B.1-1–4B.1-5 (2018)

    Google Scholar 

  144. Ruzzarin, M., et al.: Instability of dynamic- RON and threshold voltage in GaN-on-GaN vertical field-effect transistors. IEEE Trans. Electron Devices. 64(8), 3126 (2017)

    Article  Google Scholar 

  145. PGA26E07BA Product Overview Overview. https://industrial.panasonic.com/content/data/SC/ds/ds8/c2/FLY000074_EN.pdf

  146. Bahl, S.R., Joh, J., Fu, L., Sasikumar, A., Chatterjee, T., Pendharkar, S.: Application reliability validation of GaN power devices. In: IEEE International Electron Devices Meeting, p. 20.5.1 (2016)

  147. Meneghesso, G., et al.: Trapping and reliability issues in GaN-based MIS HEMTs with partially recessed gate. Microelectron. Reliab. 58, 151–157 (2016)

    Article  Google Scholar 

  148. Wu, T., et al.: Time dependent dielectric breakdown (TDDB) evaluation of PE-ALD SiN gate dielectrics on AlGaN/GaN recessed gate D-mode MIS-HEMTs and E-mode MIS-FETs. In: 2015 IEEE International Reliability Physics Symposium (IRPS), p. 6C.4.1 (2015)

    Google Scholar 

  149. Warnock, S., del Alamo, J.A.: Progressive breakdown in high-voltage GaN MIS-HEMTs. In: 2016 IEEE International Reliability Physics Symposium (IRPS), pp. 4A-6–1 (2016)

    Google Scholar 

  150. Degraeve, R., Kaczer, B., De Keersgieter, A., Groeseneken, G.: Relation between breakdown mode and breakdown location in short channel NMOSFETs and its impact on reliability specifications. IEEE Trans. Device Mater. Reliab. 1(3), 163–169 (2001)

    Article  Google Scholar 

  151. Sun, M., Member, S., Zhang, Y., Member, S., Gao, X.: High-performance GaN vertical fin power transistors on bulk GaN substrates. IEEE Electron Device Lett. 38(4), 509–512 (2017)

    Article  Google Scholar 

  152. Yu, F., et al.: Vertical architecture for enhancement mode power transistors based on GaN nanowires. Appl. Phys. Lett. 108(21), 213503 (2016). https://doi.org/10.1063/1.4952715

  153. Rossetto, I., et al.: Field- and current-driven degradation of GaN-based power HEMTs with p-GaN gate: dependence on Mg-doping level. Microelectron. Reliab. 76–77, 298–303 (2017). https://doi.org/10.1016/j.microrel.2017.06.061

  154. Tallarico, A.N., et al.: Investigation of the p-GaN gate breakdown in forward-biased GaN-based power HEMTs. IEEE Electron Device Lett. 38(1), 99–102 (2017)

    Article  Google Scholar 

  155. Wu, T., et al.: Forward bias gate breakdown mechanism in enhancement-mode p-GaN gate AlGaN/GaN high-electron mobility transistors. 36(10), 1001–1003 (2015)

    Google Scholar 

  156. Hilt, O., Würfl, J., Kuzmík, J.: Gate reliability investigation in normally-off. IEEE Electron Device Lett. 37(4), 385–388 (2016)

    Article  Google Scholar 

  157. Tapajna, M., Hilt, O., Bahat-Treidel, E., Würfl, J., Kuzmík, J.: Gate reliability investigation in normally-off p-type-GaN cap/AlGaN/GaN HEMTs under forward bias stress. Appl. Phys. Lett. 37, 385 (2016)

    Google Scholar 

  158. Masin, F., et al.: Positive temperature dependence of time-dependent breakdown of GaN-on-Si E-mode HEMTs under positive gate stress. Appl. Phys. Lett. 115(5), 8–12 (2019)

    Article  Google Scholar 

  159. Fleury, C., et al.: Statistics and localisation of vertical breakdown in AlGaN/GaN HEMTs on SiC and Si substrates for power applications. Microelectron. Reliab. 53(9–11), 1444–1449 (2013)

    Article  Google Scholar 

  160. Borga, M., et al.: Evidence of time-dependent vertical breakdown in GaN-on-Si HEMTs. IEEE Trans. Electron Devices. 64(9), 3616–3621 (2017)

    Article  Google Scholar 

  161. Rossetto, I., et al.: Field-related failure of GaN-on-Si HEMTs: dependence on device geometry and passivation. IEEE Trans. Electron Devices. 64(1), 73–77 (2017)

    Article  Google Scholar 

  162. Rossetto, I., et al.: 2DEG retraction and potential distribution of GaN-on-Si HEMTs investigated through a floating gate terminal. IEEE Trans. Electron Devices. 65(4), 1303–1307 (2018)

    Article  Google Scholar 

  163. Meneghini, M., et al.: Extensive investigation of time-dependent breakdown of GaN-HEMTs submitted to OFF -state stress. IEEE Trans. Electron Devices. 62(8), 2549–2554 (2015)

    Article  Google Scholar 

  164. Borga, M., et al.: Impact of the substrate and buffer design on the performance of GaN on Si power HEMTs. Microelectron. Reliab. 88–90, 584–588 (2018)

    Article  Google Scholar 

  165. Moens, P., et al.: Intrinsic reliability assessment of 650V rated AlGaN/GaN based power devices : an industry perspective. ECS Trans. 72(4), 65–76 (2016)

    Article  Google Scholar 

  166. Tanaka, K., et al.: Reliability of hybrid-drain-embedded gate injection transistor. In: IEEE International Reliability Physics Symposium Proceedings, pp. 4B2.1–4B2.10 (2017)

    Google Scholar 

  167. Joh, J., Tipirneni, N., Pendharkar, S., Krishnan, S.: Current collapse in GaN heterojunction field effect transistors for high-voltage switching applications. In: IEEE International Reliability Physics Symposium Proceedings, p. 6C.5.1 (2014)

    Google Scholar 

  168. Ji, D., Li, W., Chowdhury, S.: Switching performance analysis of GaN OG-FET using TCAD device-circuit-integrated model. In: IEEE 30th International Symposium on Power Semiconductor Devices and ICs (ISPSD), Chicago, pp. 208–211 (2018). https://doi.org/10.1109/ISPSD.2018.8393639

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matteo Meneghini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Meneghini, M. et al. (2023). GaN-Based Lateral and Vertical Devices. In: Rudan, M., Brunetti, R., Reggiani, S. (eds) Springer Handbook of Semiconductor Devices . Springer Handbooks. Springer, Cham. https://doi.org/10.1007/978-3-030-79827-7_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-79827-7_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-79826-0

  • Online ISBN: 978-3-030-79827-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics