Skip to main content

Semiconducting Materials for Printed Flexible Electronics

  • Chapter
  • First Online:
Advanced Materials for Printed Flexible Electronics

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 317))

  • 2345 Accesses

Abstract

Inorganic, organic, and hybrid composite semiconducting materials are critical for developing active flexible electronics. Inorganic materials have superior properties in terms of performance and stability while solution processable organic semiconductors are attractive due to low-cost processing at ambient environment and flexibility. Examples of inorganic semiconductors commonly used for flexible electronics are Si, oxides of transition metals, and chalcogenides. From the printability point of view, the solubility and proper dispersion of organic semiconductors are important parameters. Commonly used solution-processed organic semiconductors having acceptable charge transport and mobility include regioregular poly(3-hexylthiophene) (P3HT), poly(triarylamine), poly(3,3-didodecyl quaterthiophene) (PQT), poly(2,5-bis(3-tetradecyllthiophen-2-yl) and thieno[3,2-b]thiophene) (PBTTT). Fullerenes and solution processable derivatives such as phenyl-C61-butyric acid methyl ester (PCBM) blended with P3HT are some of the commonly used electron donors and acceptors in the bulk heterojunction devices. Additionally, carbon nanotubes and graphene are also under investigation due to their high mobility. Besides, three-dimensionally confined semiconductor quantum dots and nanoconfinement of semiconductors have emerged to be a versatile material system with unique physical properties for a wide range of device applications including flexible electronics. This chapter will provide a brief review on the perspectives and prospects of semiconducting materials for printed flexible electronics, including inorganic, organic semiconductors and their composite systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akinwande D, Petrone N, Hone J (2014) Two-dimensional flexible nanoelectronics. Nat Commun 5:5678

    Article  CAS  Google Scholar 

  • Agranovich VM, Gartstein YN, Litinskaya M (2011) Hybrid resonant organic–inorganic nanostructures for optoelectronic applications. Chem Rev 111(9):5179–5214

    Google Scholar 

  • Baca AJ et al (2007) Printable single-crystal silicon micro/nanoscale ribbons, platelets and bars generated from bulk wafers. Adv Funct Mater 17:3051–3062

    Article  CAS  Google Scholar 

  • Baldo MA, O’Brien DF, You Y, Shoustikov A, Sibley S, Thompson ME, Forrest SR (1998) Highly efficient phosphorescent emission from organic electroluminescent devices. Nature 395:151–154

    Google Scholar 

  • Bi S, He Z, Chen J, Li D (2015) Solution-grown small-molecule organic semiconductor with enhanced crystal alignment and areal coverage for organic thin film transistors. AIP Adv 5:077170. https://doi.org/10.1063/1.4927577

    Article  CAS  Google Scholar 

  • Borsenberger PM, Weiss DS (1993) Organic photoreceptors for imaging systems. Marcel Dekker, New York

    Google Scholar 

  • Brabec CJ (2004) Organic photovoltaics: technology and market. Sol Energy Mater Sol Cells 83:273–292

    Article  CAS  Google Scholar 

  • Brody TP (1984) The thin film transistor—a late flowering bloom. IEEE Trans Electron Devices 31(11):1614–1628

    Article  Google Scholar 

  • Brütting W (2005) Organic semiconductors. In: Lerner RG, Triggs GL (Hrsg) Encyclopedia of physics. Wiley-VCH, Weinheim, pp 1866–1876

    Google Scholar 

  • Burroughes JH, Bradley DDC, Brown AR, Marks RN, Mackay K, Friend RH, Burn PL, Holmes AB (1990) Light-emitting diodes based on conjugated polymers. Nature 347:539–541

    Article  CAS  Google Scholar 

  • Carter J, Crankshaw M, Jung S (2013) Flat panel organic light-emitting diode (OLED) displays: a case study. In: Hutchings M, Martin GD (eds) Inkjet technology for digital fabrication. I. Wiley, Chichester, pp 237–254

    Google Scholar 

  • Coe S, Woo W-K, Bawendi M, Bulović V (2002) Electroluminescence from single monolayers of nanocrystals in molecular organic devices. Nature 420:800–803

    Article  CAS  Google Scholar 

  • Collini E, Scholes GD (2009) Coherent intrachain energy migration in a conjugated polymer at room temperature. Science 323:369–373

    Article  CAS  Google Scholar 

  • Dexter DL (1953) A theory of sensitized luminescence in solids. J Chem Phys 21:836

    Article  CAS  Google Scholar 

  • Dey A, Singh A, Das D, Iyer PK (2015) Organic semiconductors: a new future of nanodevices and applications. In: Babu Krishna Moorthy S (ed) Thin film structures in energy applications. Springer, Cham, pp 97–128

    Google Scholar 

  • Dimitrakopoulos CD, Malenfant PRL (2002) Organic thin film transistors for large area electronics. Adv Mater 14:99–117

    Article  CAS  Google Scholar 

  • Dong H, Fu X, Liu J, Wang Z, Hu W (2013) 25th Anniversary article: key points for high-mobility organic field-effect transistors. Adv Mater 25:6158–6183

    Article  CAS  Google Scholar 

  • Farchioni R, Grosso G (eds) (2001) Organic electronic materials. Springer, Berlin

    Google Scholar 

  • Faupel F, Dimitrakopoulos C, Kahn A, Wöll C (eds) (2004) Org Electron. Special Issue of J Mater Res 19(7)

    Google Scholar 

  • Filo J, Putala M (2010) Semiconducting organic molecular materials. J Electr Eng 61(5):314–320

    Google Scholar 

  • Guzelturk B, Demir HV (2015) Organic-Inorganic composites of semiconductor nanocrystals for efficient excitonics. J Phys Chem Lett 6(12):2206–2215

    Google Scholar 

  • Guzelturk B, Hernandez Martinez PL, Sharma VK, Coskun Y, Ibrahimova V, Tuncel D, Govorov AO, Sun XW, Xiong Q, Demir HV et al (2014) Study of exciton transfer in dense quantum dot nanocomposites. Nanoscale 6:11387–11394

    Article  CAS  Google Scholar 

  • Hsieh P-Y, Lee C-Y, Tai N-H (2015) A high carrier-mobility crystalline silicon film directly grown on polyimide using SiCl4/H2 microwave plasma for flexible thin film transistors. J Mater Chem C 3:7513–7522

    Article  CAS  Google Scholar 

  • Jacob MV (2014) Organic semiconductors: past, present and future. Electronics 3:594–597

    Article  Google Scholar 

  • Janssen RAJ, Hummelen JC, Sariciftci NS (2005) Polymer–fullerene bulk heterojunction solar cells. MRS Bull 30(1):33–36

    Article  CAS  Google Scholar 

  • Kang K et al (2015) High-mobility three-atom-thick semiconducting films with waferscale homogeneity. Nature 520:656–660

    Article  CAS  Google Scholar 

  • Karl N (1985) Organic semiconductors. In: Madelung O, Schulz M, Weiss H (eds), Landolt-Boernstein (New Series), Group III, vol 17, Semiconductors, subvol 17i. Springer, Berlin, p 106

    Google Scholar 

  • Khan S, Lorenzelli L, Dahiya RS (2015) Technologies for printing sensors and electronics over large flexible substrates: a review. IEEE Sensors J 15(6):3164–3185

    Article  Google Scholar 

  • Kim T, Kim JH, Kang TE, Lee C, Kang H, Shin M, Wang C, Ma B, Jeong U, Kim TS et al (2015) Flexible, highly efficient all-polymer solar cells. Nat Commun 6:8547

    Article  CAS  Google Scholar 

  • Klinke C, Chen J, Afzali A, Avouris P (2005) Charge transfer induced polarity switching in carbon nanotube transistors. Nano Lett 5(3):555–558

    Article  CAS  Google Scholar 

  • Ko HC, Baca AJ, Rogers JA (2006) Bulk quantities of single-crystal silicon micro-/nanoribbons generated from bulk wafers. Nano Lett 6:2318–2324

    Article  CAS  Google Scholar 

  • Ko H et al (2010) Ultrathin compound semiconductor on insulator layers for high-performance nanoscale transistors. Nature 468:286–289

    Article  CAS  Google Scholar 

  • Lampert MA, Mark P (1970) Current injection in solids. Academic Press, New York

    Google Scholar 

  • Lee SJ, Kim Y-J, Yeo SY, Lee E, Lim HS, Kim M, Song Y-W, Cho J, Lim JA (2015) Centro-apical self-organization of organic semiconductors in a line-printed organic semiconductor: polymer blend for one-step printing fabrication of organic field-effect transistors. Sci Rep 5:14010. https://doi.org/10.1038/srep14010

    Article  Google Scholar 

  • Lei Y, Deng P, Li J, Lin M, Zhu F, Ng T-W, Lee C-S, Ong BS (2016) Solution-processed donor-acceptor polymer nanowire network semiconductors for high-performance field-effect transistors. Sci Rep 6:24476. https://doi.org/10.1038/srep24476

    Article  CAS  Google Scholar 

  • Li J, Zhao Y, Tan HS, Guo Y, Di C-A, Yu G, Liu Y, Lin M, Lim SH, Zhou Y, Su H, Ong BS (2012) A stable solution-processed polymer semiconductor with record high-mobility for printed transistors. Sci Rep 2:754. https://doi.org/10.1038/srep00754

    Article  CAS  Google Scholar 

  • Liu Z, Sun Y, Yuan J, Wei H, Huang X, Han L, Wang W, Wang H, Ma W (2013) High-efficiency hybrid solar cells based on polymer/PbSxSe1−x nanocrystals benefiting from vertical phase segregation. Adv Mater 25:5772–5778

    Article  CAS  Google Scholar 

  • Liu Y, Zhao J, Li Z, Mu C, Ma W, Hu H, Jiang K, Lin H, Ade H, Yan H (2014) Aggregation and morphology control enables multiple cases of high-efficiency polymer solar cells. Nat Commun 5:5293. https://doi.org/10.1038/ncomms6293

    Article  CAS  Google Scholar 

  • Magnan F (2017) Sulphur- & nitrogen-containing Ï€-conjugated organic molecules as potential semiconductors for optoelectronic devices. PhD dissertation, University of Ottawa, Ottawa, Canada

    Google Scholar 

  • Matsumura M, Camata RP (2005) Pulsed laser deposition and photoluminescence measurements of ZnO thin films on flexible polyimide substrates. Thin Solid Films 476:317–321

    Article  CAS  Google Scholar 

  • Meitl MA et al (2006) Transfer printing by kinetic control of adhesion to an elastomeric stamp. Nat Mater 5:33–38

    Article  CAS  Google Scholar 

  • Milliron DJ, Mitzi DB, Copel M, Murray CE (2006) Solution-processed metal chalcogenide films for p-type transistors. Chem Mater 18:587–590

    Article  CAS  Google Scholar 

  • Mitzi DB (2004) Solution-processed inorganic semiconductors. J Mater Chem 14:2355–2365

    Article  CAS  Google Scholar 

  • O’Connor B, Kline RJ, Conrad BR, Richter LJ, Gundlach D, Toney MF, DeLongchamp DM (2011) Anisotropic structure and charge transport in highly strain-aligned regioregular poly(3-hexylthiophene). Adv Funct Mater 21:3697–3705

    Article  CAS  Google Scholar 

  • Pfeiffer M, Leo K, Zhou X, Huang JS, Hofmann M, Werner A, Blochwitz-Nimoth J (2003) Doped organic semiconductors: physics and application in light emitting diodes. Org Electron 4(2–3):89–103

    Article  CAS  Google Scholar 

  • Presley RE, Hong D, Chiang HQ, Hung CM, Hoffman RL, Wager JF (2006) Transparent ring oscillator based on indium gallium oxide thin-film transistors. Solid State Electron 50:500–503

    Google Scholar 

  • Rogers JA, Lagally MG, Nuzzo RG (2011) Synthesis, assembly and applications of semiconductor nanomembranes. Nature 477:45–53

    Article  CAS  Google Scholar 

  • Root SE, Savagatrup S, Printz AD, Rodriquez D, Lipomi DJ (2017) Mechanical properties of organic semiconductors for stretchable, highly flexible, and mechanically robust electronics. Chem Rev 117(9):6467–6499

    Article  CAS  Google Scholar 

  • Scott JI, Xue X, Wang M, Kline RJ, Hoffman BC, Dougherty D, Zhou C, Bazan G, O’Connor BT (2016) Significantly increasing the ductility of high performance polymer semiconductors through polymer blending. ACS Appl Mater Interfaces 8(22):14037–14045

    Article  CAS  Google Scholar 

  • Shaheen SE, Brabec CJ, Sariciftci NS, Padinger F, Fromherz T, Hummelen JC (2001) 2.5% efficient organic plastic solar cells. Appl Phys Lett 78:84–843

    Article  CAS  Google Scholar 

  • Sirringhaus H (2014) 25th anniversary article: organic field-effect transistors: the path beyond amorphous silicon. Adv Mater 26:1319–1335

    Article  CAS  Google Scholar 

  • Skotheim TA, Elsembaumer RL, Reynolds JR (eds) (1998) Handbook of conducting polymers. Marcel Dekker, New York

    Google Scholar 

  • Sun Y, Rogers JA (2007) Inorganic semiconductors for flexible electronics. Adv Mater 19:1897–1916

    Article  CAS  Google Scholar 

  • Sun T, Scott JI, Wang M, Kline RJ, Bazan GC, O’Connor BT (2017) Plastic deformation of polymer blends as a means to achieve stretchable organic transistors. Adv Electron Mater 3:1600388

    Article  CAS  Google Scholar 

  • Troccoli MN, Roudbari AJ, Chuang T-K, Hatalis MK (2006) Solid State Electron 50(6):1080–1087

    Article  CAS  Google Scholar 

  • Tsao HN, Cho DM, Park I, Hansen MR, Mavrinskiy A, Yoon DY, Graf R, Pisula W, Spiess HW, Müllen K (2011) Ultrahigh mobility in polymer field-effect transistors by design. J Am Chem Soc 133(8):2605–2612

    Article  CAS  Google Scholar 

  • Usta H, Facchetti A (2015) Polymeric and small-molecule semiconductors for organic field-effect transistors. In: Caironi M, Noh Y (eds) Large area and flexible electronics. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, pp 3–99. https://doi.org/10.1002/9783527679973.ch1

    Chapter  Google Scholar 

  • van Duren JKJ, Yang XN, Loos J, Bulle-Lieuwma CWT, Sieval AB, Hummelen JC, Janssen RAJ (2004) Relating the morphology of poly(p-phenylene vinylene)/methanofullerene blends to solar-cell performance. Adv Funct Mater 14(5):425–434

    Article  CAS  Google Scholar 

  • Weimer PK (1962) The TFT a new thin-film transistor. Proceedings of the IRE 50(6):1462–1469

    Google Scholar 

  • Wienk MM, Kroon JM, Verhees WJ, Knol J, Hummelen JC, van Hal PA, Janssen RA (2003) Efficient methano[70]fullerene/MDMO-PPV bulk heterojunction photovoltaic cells. Angew Chem Int Ed Engl 42(29):3371–3375

    Article  CAS  Google Scholar 

  • Xing G, Mathews N, Sun S, Lim SS, Lam YM, Grätzel M, Mhaisalkar S, Sum TC (2013) Long-range balanced electron- and hole-transport lengths in organic–inorganic CH3NH3PbI3. Science 342:344–347

    Article  CAS  Google Scholar 

  • Xu J, Wang S, Wang G-J N et al (2017) Highly stretchable polymer semiconductor films through the nanoconfinement effect. Science 355(6320):59–64. https://doi.org/10.1126/science.aah4496

    Article  CAS  Google Scholar 

  • Yang K (2017) Conjugated polymers and small molecules with latent hydrogen-bonding for organic electronic applications. PhD dissertation, University of Akron, Akron, USA

    Google Scholar 

  • Yu KJ, Yan Z, Han M, Rogers JA (2017) Inorganic semiconducting materials for flexible and stretchable electronics. npj Flexible Electron 1:4

    Article  CAS  Google Scholar 

  • Yuan H-C et al (2009) Flexible photodetectors on plastic substrates by use of printing transferred single-crystal germanium membranes. Appl Phys Lett 94:013102

    Article  CAS  Google Scholar 

  • Zhang P et al (2006) Electronic transport in nanometre-scale silicon-on-insulator membranes. Nature 439:703–706

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tong, C. (2022). Semiconducting Materials for Printed Flexible Electronics. In: Advanced Materials for Printed Flexible Electronics. Springer Series in Materials Science, vol 317. Springer, Cham. https://doi.org/10.1007/978-3-030-79804-8_4

Download citation

Publish with us

Policies and ethics