Skip to main content

Intelligent Systems for Dengue, Chikungunya, and Zika Temporal and Spatio-Temporal Forecasting: A Contribution and a Brief Review

  • Chapter
  • First Online:
Assessing COVID-19 and Other Pandemics and Epidemics using Computational Modelling and Data Analysis

Abstract

Arboviruses are diseases transmitted by viruses which are maintained in the wild through a vertebrate host and a hematophagous arthropod, such as a mosquito. The transmitter vector of an arbovirus is the arthropod which transmits the virus from one vertebrate to the other through a bite. The biological transmission usually occurs when the hematophagous arthropod feeds on a viremic vertebrate and deposits infectious saliva during the feeding of the blood of another vertebrate. However, in some types of arboviruses, the biological transmission occurs directly in the human–mosquito cycle. Moreover, other forms of transmission have been reported, such as transmission from mother to child during pregnancy, blood transfusion, and through sexual intercourse. Demographic changes and the intense migratory flow from rural areas to urban areas have generated disorderly growth in cities. Deficiencies in basic sanitation also contribute to the vector’s proliferation in tropical and subtropical countries. Brazil, which is a tropical country, is very affected by arboviruses, such as dengue, malaria, and yellow fever. With climate change and the increase in the number and frequency of international flights, two new arboviruses transmitted by the Aedes aegypti mosquito appeared in Brazil: the chikungunya and the Zika virus. This situation brings new challenges regarding the control and vector monitoring. The advancement of Digital Epidemiology, together with the development of Data Mining and Machine Learning techniques, provided rapid monitoring, control, and simulation of the spread of diseases. With this in mind, the prediction tools are able to assist public health systems in controlling epidemics and behavioral factors that favor the vector of these diseases. In this sense, in this chapter we present a literature review to identify methods of predicting cases of arboviruses, as well as the prediction of breeding sites.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Entomological research is understood as research involving insects and their relationship with humans, with other living beings and with the environment.

References

  1. Abidemi, A., Abd Aziz, M., & Ahmad, R. (2020). Vaccination and vector control effect on dengue virus transmission dynamics: Modelling and simulation. Chaos, Solitons & Fractals, 133, 109648.

    Google Scholar 

  2. Abreu, P. H., Santos, M. S., Abreu, M. H., Andrade, B., & Silva, D. C. (2016). Predicting breast cancer recurrence using machine learning techniques: a systematic review. ACM Computing Surveys (CSUR), 49(3), 52.

    Google Scholar 

  3. Ahmad, M., Ibrahim, M., Mohamed, Z., Ismail, N., Abdullah, M., Shueb, R., & Shafei, M. (2018). The sensitivity, specificity and accuracy of warning signs in predicting severe dengue, the severe dengue prevalence and its associated factors. International Journal of Environmental Research and Public Health, 15(9), 1–12.

    Google Scholar 

  4. Albrieu-Llinás, G., Espinosa, M. O., Quaglia, A., Abril, M., & Scavuzzo, C. M. (2018). Urban environmental clustering to assess the spatial dynamics of Aedes aegypti breeding sites. Geospatial Health, 13(1), 135–142.

    Google Scholar 

  5. Baquero, O. S., Santana, L. M. R., & Chiaravalloti-Neto, F. (2018). Dengue forecasting in São Paulo city with generalized additive models, artificial neural networks and seasonal autoregressive integrated moving average models. PLoS One, 13(4), 1–12. Retrieved from https://doi.org/10.1371/journal.pone.0195065

  6. Bates, S., Hutson, H., & Rebaza, J. (2017). Global stability of zika virus dynamics. Differential Equations and Dynamical Systems, 29, 657–672.

    Google Scholar 

  7. Beketov, M. A., Yurchenko, Y. A., Belevich, O. E., & Liess, M. (2014). What environmental factors are important determinants of structure, species richness, and abundance of mosquito assemblages? Journal of Medical Entomology, 47(2), 129–139.

    Google Scholar 

  8. Beltrán, J. D., Boscor, A., dos Santos, W. P., Massoni, T., & Kostkova, P. (2018). ZIKA: A New System to Empower Health Workers and Local Communities to Improve Surveillance Protocols by E-learning and to Forecast Zika Virus in Real Time in Brazil. In Proceedings of the 2018 International Conference on Digital Health (pp. 90–94).

    Google Scholar 

  9. Bhatt, S., Gething, P. W., Brady, O. J., Messina, J. P., Farlow, A. W., Moyes, C. L., …et al. (2013). The global distribution and burden of dengue. Nature, 496(7446), 504.

    Google Scholar 

  10. Bhunia, G. S., & Shit, P. K. (2019). Geospatial analysis of public health. Springer International Publishing.

    Google Scholar 

  11. Bonyah, E., Khan, M. A., Okosun, K., & Islam, S. (2017). A theoretical model for zika virus transmission. PLoS One, 12(10), e0185540.

    Google Scholar 

  12. Brasier, A. R., Ju, H., Garcia, J., Spratt, H. M., Victor, S. S., Forshey, B. M., …Kochel, T. J. (2012). A three-component biomarker panel for prediction of dengue hemorrhagic fever. The American Journal of Tropical Medicine and Hygiene, 86(2), 341–348.

    Google Scholar 

  13. BRASIL, M. d. S. (2012). Levantamento rápido de índices para Aedes aegypti LIRAa para vigilância entomológica do Aedes aegypti no Brasil: Metodologia para avaliação dos índices de Breateau e predial e tipos de recipientes (1st ed.; G. Coelho, P. C. Silva, & R. L. Frutuoso, Eds.). Author.

    Google Scholar 

  14. Buczak, A. L., Baugher, B., Moniz, L. J., Bagley, T., Babin, S. M., & Guven, E. (2018). Ensemble method for dengue prediction. PloS One, 13(1), e0189988.

    Google Scholar 

  15. Butt, N., Abbassi, A., Munir, S., Ahmad, S. M., & Sheikh, Q. H. (2008). Haematological and biochemical indicators for the early diagnosis of dengue viral infection. Journal of College of Physicians and Surgeons Pakistan, 18(5), 282–285.

    Google Scholar 

  16. Ch, S., Sohani, S., Kumar, D., Malik, A., Chahar, B., Nema, A., …Dhiman, R. (2014). A support vector machine-firefly algorithm based forecasting model to determine malaria transmission. Neurocomputing, 129, 279–288.

    Google Scholar 

  17. Chakraborty, T., Chattopadhyay, S., & Ghosh, I. (2019). Forecasting dengue epidemics using a hybrid methodology. Physica A: Statistical Mechanics and its Applications, 527, 121266.

    Google Scholar 

  18. Chan, T.-C., Hu, T.-H., & Hwang, J.-S. (2015). Daily forecast of dengue fever incidents for urban villages in a city. International Journal of Health Geographics, 14, 1–11.

    Google Scholar 

  19. Chen, Y., Ong, J. H. Y., Rajarethinam, J., Yap, G., Ng, L. C., & Cook, A. R. (2018). Neighbourhood level real-time forecasting of dengue cases in tropical urban Singapore. BCM Medicine, 16, 1–13.

    Google Scholar 

  20. Choi, H. K. (2018). Stock price correlation coefficient prediction with ARIMA-LSTM hybrid model. Preprint. arXiv:1808.01560.

    Google Scholar 

  21. Choudhury, Z. M., Banu, S., & Islam, A. M. (2008). Forecasting dengue incidence in Dhaka, Bangladesh: A time series analysis. WHO Regional Office for South-East Asia.

    Google Scholar 

  22. Christou, V., Tsipouras, M. G., Giannakeas, N., Tzallas, A. T., & Brown, G. (2019). Hybrid extreme learning machine approach for heterogeneous neural networks. Neurocomputing, 361, 137–150.

    Google Scholar 

  23. Cortes, F., Martelli, C. M. T., de Alencar Ximenes, R. A., Montarroyos, U. R., Junior, J. B. S., Cruz, O. G., …de Souza, W. V. (2018). Time series analysis of dengue surveillance data in two Brazilian cities. Acta Tropica, 182, 190–197.

    Google Scholar 

  24. Deb, K., Agrawal, S., Pratap, A., & Meyarivan, T. (2000). A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization: NSGA-II. In International Conference on Parallel Problem Solving from Nature (pp. 849–858).

    Google Scholar 

  25. Deb, K., Pratap, A., Agarwal, S., & Meyarivan, T. (2002). A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation, 6(2), 182–197.

    Google Scholar 

  26. de Kruif, M. D., Setiati, T. E., Mairuhu, A. T. A., Koraka, P., Aberson, H. A., Spek, C. A., …van Gorp, E. C. M. (2008). Differential gene expression changes in children with severe dengue virus infections. PLoS Neglected Tropical Diseases, 2(4), e215.

    Google Scholar 

  27. de Lima, S. M., da Silva-Filho, A. G., & Dos Santos, W. P. (2016a). Detection and classification of masses in mammographic images in a multi-kernel approach. Computer Methods and Programs in Biomedicine, 134, 11–29.

    Google Scholar 

  28. de Lima, T. F. M., Lana, R. M., de Senna Carneiro, T. G., Codeço, C. T., Machado, G. S., Ferreira, L. S., …Davis Junior, C. A. (2016b). Dengueme: A tool for the modeling and simulation of dengue spatiotemporal dynamics. International Journal of Environmental Research and Public Health, 13(9), 920.

    Google Scholar 

  29. De Livera, A. M., Hyndman, R. J., & Snyder, R. D. (2011). Forecasting time series with complex seasonal patterns using exponential smoothing. Journal of the American Statistical Association, 106(496), 1513–1527.

    Google Scholar 

  30. de Santana, M. A., Pereira, J. M. S., da Silva, F. L., de Lima, N. M., de Sousa, F. N., de Arruda, G. M. S., …dos Santos, W. P. (2018). Breast cancer diagnosis based on mammary thermography and extreme learning machines. Research on Biomedical Engineering, 34(1), 45–53.

    Google Scholar 

  31. Dodero-Rojas, E., Ferreira, L. G., Leite, V. B., Onuchic, J. N., & Contessoto, V. G. (2020). Modeling chikungunya control strategies and mayaro potential outbreak in the city of rio de janeiro. PLoS One, 15(1), e0222900.

    Google Scholar 

  32. Dom, N. C., Hassan, A. A., Abd Latif, Z., & Ismail, R. (2013). Generating temporal model using climate variables for the prediction of dengue cases in Subang Jaya, Malaysia. Asian Pacific Journal of Tropical Disease, 3(5), 352–361.

    Google Scholar 

  33. Duncan, A. P. (2014). The Analysis and Application of Artificial Neural Networks for Early Warning Systems in Hydrology and the Environment (Unpublished doctoral dissertation). University of Exeter.

    Google Scholar 

  34. Fauci, A. S., & Morens, D. M. (2016). Zika virus in the americas – Yet another arbovirus threat. New England Journal of Medicine, 374(7), 601–604. Retrieved from https://doi.org/10.1056/NEJMp1600297 (PMID: 26761185)

  35. Funk, S., Kucharski, A. J., Camacho, A., Eggo, R. M., Yakob, L., Murray, L. M., & Edmunds, W. J. (2016). Comparative analysis of dengue and zika outbreaks reveals differences by setting and virus. PLoS Neglected Tropical Diseases, 10(12), e0005173.

    Google Scholar 

  36. Gharbi, M., Quenel, P., Gustave, J., Cassadou, S., La Ruche, G., Girdary, L., & Marrama, L. (2011). Time series analysis of dengue incidence in Guadeloupe, French West Indies: forecasting models using climate variables as predictors. BMC Infectious Diseases, 11(1), 1–13.

    Google Scholar 

  37. Gos, M., Krzyszczak, J., Baranowski, P., Murat, M., & Malinowska, I. (2020). Combined TBATS and SVM model of minimum and maximum air temperatures applied to wheat yield prediction at different locations in Europe. Agricultural and Forest Meteorology, 281, 107827.

    Google Scholar 

  38. Gubler, D. J. (2011). Dengue, urbanization and globalization: the unholy trinity of the 21st century. Tropical medicine and health, 39(4SUPPLEMENT), S3–S11.

    Google Scholar 

  39. Guo, P., Liu, T., Zhang, Q., Wang, L., Xiao, J., Zhang, Q., …Ma, W. (2017, 10). Developing a dengue forecast model using machine learning: A case study in China. PLOS Neglected Tropical Diseases, 11(10), 1–22. Retrieved from https://doi.org/10.1371/journal.pntd.0005973

  40. Guzman, M. G., Halstead, S. B., Artsob, H., Buchy, P., Farrar, J., Gubler, D. J., …et al. (2010). Dengue: a continuing global threat. Nature Reviews Microbiology, 8(12supp), S7.

    Google Scholar 

  41. Hamlet, A., Jean, K., Perea, W., Yactayo, S., Biey, J., Van Kerkhove, M., …Garske, T. (2018). The seasonal influence of climate and environment on yellow fever transmission across Africa. PLoS Neglected Tropical Diseases, 12(3), e0006284.

    Google Scholar 

  42. Huang, G. B., Wang, D. H., & Lan, Y. (2011). Extreme learning machines: a survey. International Journal of Machine Learning and Cybernetics, 2(2), 107–122.

    Google Scholar 

  43. Huang, G. B., Zhu, Q. Y., & Siew, C. K. (2006). Extreme learning machine: theory and applications. Neurocomputing, 70(1–3), 489–501.

    Google Scholar 

  44. Iqbal, N., & Islam, M. (2017). Machine learning for dengue outbreak prediction: An outlook. International Journal of Advanced Research in Computer Science, 8(1), 93–102.

    Google Scholar 

  45. Jensen, M. T. (2003). Reducing the run-time complexity of multiobjective EAs: The NSGA-II and other algorithms. IEEE Transactions on Evolutionary Computation, 7(5), 503–515.

    Google Scholar 

  46. Jindal, A., & Rao, S. (2017). Agent-based modeling and simulation of mosquito-borne disease transmission. In Proceedings of the 16th Conference on Autonomous Agents and Multiagent Systems (pp. 426–435).

    Google Scholar 

  47. Jing, Q. L., Cheng, Q., Marshall, J. M., Hu, W. B., Yang, Z. C., & Lu, J. H. (2018). Imported cases and minimum temperature drive dengue transmission in Guangzhou, China: Evidence from arimax model. Epidemiology and Infection, 146, 1226–1235.

    Google Scholar 

  48. Joyce, R. J., Janowiak, J. E., Arkin, P. A., & Xie, P. (2004). Cmorph: A method that produces global precipitation estimates from passive microwave and infrared data at high spatial and temporal resolution. Journal of Hydrometeorology, 5(3), 487–503.

    Google Scholar 

  49. Kamal, M., Kenawy, M. A., Rady, M. H., Khaled, A. S., & Samy, A. M. (2019, 12). Mapping the global potential distributions of two arboviral vectors aedes aegypti and ae. albopictus under changing climate. PLOS ONE, 13(12), 1–21. Retrieved from https://doi.org/10.1371/journal.pone.0210122

  50. Kao, Y.-H., & Eisenberg, M. C. (2018). Practical unidentifiability of a simple vector-borne disease model: Implications for parameter estimation and intervention assessment. Epidemics, 25, 89–100.

    Google Scholar 

  51. Keshtegar, B., Heddam, S., & Hosseinabadi, H. (2019). The employment of polynomial chaos expansion approach for modeling dissolved oxygen concentration in river. Environmental Earth Sciences, 78(1), 34.

    Google Scholar 

  52. Kesorn, K., Ongruk, P., Chompoosri, J., Phumee, A., Thavara, U., Tawatsin, A., & Siriyasatien, P. (2015). Morbidity rate prediction of dengue hemorrhagic fever (DHF) using the support vector machine and the Aedes aegypti infection rate in similar climates and geographical areas. PloS One, 10(5), e0125049.

    Google Scholar 

  53. Khashei, M., & Bijari, M. (2011). A novel hybridization of artificial neural networks and arima models for time series forecasting. Applied Soft Computing, 11(2), 2664–2675.

    Google Scholar 

  54. Kraemer, M. U., Sinka, M. E., Duda, K. A., Mylne, A. Q., Shearer, F. M., Barker, C. M., …et al. (2015). The global distribution of the arbovirus vectors Aedes aegypti and Ae. albopictus. eLife, 4, e08347.

    Google Scholar 

  55. Kumar, N., Abdullah, M., Faizan, M. I., Ahmed, A., Alsenaidy, H. A., Dohare, R., & Parveen, S. (2017). Progression dynamics of zika fever outbreak in el salvador during 2015–2016: a mathematical modeling approach. Future Virology, 12(5), 271–281.

    Google Scholar 

  56. Laureano-Rosario, A. E., Duncan, A. P., Mendez-Lazaro, P. A., Garcia-Rejon, J. E., Gomez-Carro, S., Farfan-Ale, J., …Muller-Karger, F. E. (2018a). Application of Artificial Neural Networks for Dengue Fever Outbreak Predictions in the Northwest Coast of Yucatan, Mexico and San Juan, Puerto Rico. Tropical Medicine and Infectious Disease, 3(1), 5.

    Google Scholar 

  57. Laureano-Rosario, A. E., Duncan, A. P., Symonds, E. M., Savic, D. A., & Muller-Karger, F. E. (2018b). Predicting culturable enterococci exceedances at Escambron Beach, San Juan, Puerto Rico using satellite remote sensing and artificial neural networks. Journal of Water and Health, 17(1), 137–148.

    Google Scholar 

  58. Lee, K. Y., Chung, N., & Hwang, S. (2016). Application of an artificial neural network (ANN) model for predicting mosquito abundances in urban areas. Ecological Informatics, 36, 172–180.

    Google Scholar 

  59. Lendek, Z., Guerra, T. M., Babuška, R., & Schutter, B. (2011). Stability analysis and nonlinear observer design using takagi-sugeno fuzzy models. Springer.

    Google Scholar 

  60. Lima, M. V. M. d., & Laporta, G. Z. (2020). Evaluation of the models for forecasting dengue in Brazil from 2000 to 2017: An ecological time-series study. Insects, 11(11), 794.

    Google Scholar 

  61. Lu, L., Lin, H., Tian, L., Yang, W., Sun, J., & Liu, Q. (2009). Time series analysis of dengue fever and weather in Guangzhou, China. BMC Public Health, 9(1), 395.

    Google Scholar 

  62. Manogaran, G., Lopez, D., Thota, C., Abbas, K. M., Pyne, S., & Sundarasekar, R. (2017). Big data analytics in healthcare Internet of Things. In Innovative healthcare systems for the 21st century (pp. 263–284). Springer.

    Google Scholar 

  63. Manogaran, G., Varatharajan, R., Lopez, D., Kumar, P. M., Sundarasekar, R., & Thota, C. (2018). A new architecture of Internet of Things and big data ecosystem for secured smart healthcare monitoring and alerting system. Future Generation Computer Systems, 82, 375–387.

    Google Scholar 

  64. Marques-Toledo, C. d. A., Degener, C. M., Vinhal, L., Coelho, G., Meira, W., Codeço, C. T., & Teixeira, M. M. (2017, 07). Dengue prediction by the web: Tweets are a useful tool for estimating and forecasting dengue at country and city level. PLOS Neglected Tropical Diseases, 11(7), 1–20. Retrieved from https://doi.org/10.1371/journal.pntd.0005729

  65. Masri, S., Jia, J., Li, C., Zhou, G., Lee, M.-C., Yan, G., & Wu, J. (2019). Use of twitter data to improve zika virus surveillance in the united states during the 2016 epidemic. BCM Public Health, 19, 1–14.

    Google Scholar 

  66. Mohammed, A., & Chadee, D. D. (2011). Effects of different temperature regimens on the development of aedes aegypti (l.)(diptera: Culicidae) mosquitoes. Acta Tropica, 119(1), 38–43.

    Google Scholar 

  67. Monaghan, A. J., Schmidt, C. A., Hayden, M. H., Smith, K. A., Reiskind, M. H., Cabell, R., & Ernst, K. C. (2019). A simple model to predict the potential abundance of aedes aegypti mosquitoes one month. American Journal of Tropical Medicine and Hygene, 100, 434–437.

    Google Scholar 

  68. Morsy, S., Dang, T., Kamel, M., Zayan, A., Makram, O., Elhady, M., …Huy, N. (2018). Prediction of zika-confirmed cases in Brazil and colombia using Google trends. Epidemiology and Infection, 146(13), 1625–1627.

    Google Scholar 

  69. Muñoz, Á. G., Thomson, M. C., Stewart-Ibarra, A. M., Vecchi, G. A., Chourio, X., Nájera, P., …Yang, X. (2017). Could the recent zika epidemic have been predicted? Frontiers in Microbiology, 8, 1291.

    Google Scholar 

  70. Musa, S. S., Zhao, S., Chan, H.-S., Jin, Z., He, D., et al. (2019). A mathematical model to study the 2014–2015 large-scale dengue epidemics in Kaohsiung and Tainan cities in Taiwan, China. Mathematical Biosciences and Engineering, 16(5), 3841–3863.

    Google Scholar 

  71. Musso, D., & Gubler, D. J. (2016). Zika virus. Clinical Microbiology Rewies, 29, 487–524.

    Google Scholar 

  72. Musso, D., Stramer, S. L., & Busch, M. P. (2016). Zika virus: A new challenge for blood transfusion. The Lancet, 387, 1993–1994.

    Google Scholar 

  73. Naim, I., Mahara, T., & Idrisi, A. R. (2018). Effective short-term forecasting for daily time series with complex seasonal patterns. Procedia Computer Science, 132, 1832–1841.

    Google Scholar 

  74. Nasirudeen, A., Wong, H. H., Thien, P., Xu, S., Lam, K.-P., & Liu, D. X. (2011). RIG-I, MDA5 and TLR3 synergistically play an important role in restriction of dengue virus infection. PLoS Neglected Tropical Diseases, 5(1), e926.

    Google Scholar 

  75. Ndaïrou, F., Area, I., Nieto, J. J., Silva, C. J., & Torres, D. F. (2018). Mathematical modeling of zika disease in pregnant women and newborns with microcephaly in Brazil. Mathematical Methods in the Applied Sciences, 41(18), 8929–8941.

    Google Scholar 

  76. Nur Aida, H., Abu Hassan, A., Anita, T., Nurita, A. T., Dieng, H., Suhaila, A. H., …Farida, A. (2017). Developing time-based model for the prediction of breeding activities of dengue vectors using early life cycle variables and epidemiological information in northern malaysia. Tropical Biomedicine, 34, 691–707.

    Google Scholar 

  77. Olawoyin, O., & Kribs, C. (2018). Effects of multiple transmission pathways on zika dynamics. Infectious Disease Modelling, 3, 331–344.

    Google Scholar 

  78. Padmanabhan, P., Seshaiyer, P., & Castillo-Chavez, C. (2017). Mathematical modeling, analysis and simulation of the spread of zika with influence of sexual transmission and preventive measures. Letters in Biomathematics, 4(1), 148–166.

    Google Scholar 

  79. PAHO. (2019). Vector-borne diseases [Computer software manual]. Retrieved from https://www.paho.org/bra/index.php?option=com_content&view=article&id=5796:doencas-transmissiveis-analise-de-situacao-de-saude&Itemid=0. Last accessed: 06 Apr 2021.

    Google Scholar 

  80. Pai, P.-F., & Lin, C.-S. (2005). A hybrid ARIMA and support vector machines model in stock price forecasting. Omega, 33(6), 497–505.

    Google Scholar 

  81. Rahman, M., Bekele-Maxwell, K., Cates, L. L., Banks, H., & Vaidya, N. K. (2019). Modeling zika virus transmission dynamics: Parameter estimates, disease characteristics, and prevention. Scientific Reports, 9(1), 1–13.

    Google Scholar 

  82. Rey, F. A. (2003). Dengue virus envelope glycoprotein structure: new insight into its interactions during viral entry. Proceedings of the National Academy of Sciences, 100(12), 6899–6901.

    Google Scholar 

  83. Rissino, S., & Lambert-Torres, G. (2009). Rough set theory—fundamental concepts, principals, data extraction, and applications. In Data mining and knowledge discovery in real life applications. InTech.

    Google Scholar 

  84. Robert, M. A., Christofferson, R. C., Weber, P. D., & Wearing, H. J. (2019). Temperature impacts on dengue emergence in the united states: investigating the role of seasonality and climate change. Epidemics, 28, 100344.

    Google Scholar 

  85. Sakkas, H., Bozidis, P., Giannakopoulos, X., Sofikitis, N., & Papadopoulou, C. (2018). An update on sexual transmission of zika virus. Pathogens, 7(3). Retrieved from https://www.mdpi.com/2076-0817/7/3/66

  86. Sang, S., Gu, S., Bi, P., Yang, W., Yang, Z., Xu, L., …Liu, Q. (2015, 05). Predicting unprecedented dengue outbreak using imported cases and climatic factors in Guangzhou, 2014. PLOS Neglected Tropical Diseases, 9(5), 1–12.

    Google Scholar 

  87. Scavuzzo, J. M., Trucco, F., Espinosa, M., Tauro, C. B., Abril, M., Scavuzzo, C. M., & Frery, A. C. (2018). Modeling Dengue vector population using remotely sensed data and machine learning. Acta Tropica, 185, 167–175.

    Google Scholar 

  88. Scavuzzo, J. M., Trucco, F. C., Tauro, C. B., German, A., Espinosa, M., & Abril, M. (2017). Modeling the temporal pattern of Dengue, Chicungunya and Zika vector using satellite data and neural networks. In Information processing and control (RPIC), 2017 xvii workshop on (pp. 1–6).

    Google Scholar 

  89. Shaukat, K., Masood, N., Mehreen, S., & Azmeen, U. (2015). Dengue fever prediction: A data mining problem. Journal of Data Mining in Genomics & Proteomics, 2015, 1–5.

    Google Scholar 

  90. Shutt, D. P., Manore, C. A., Pankavich, S., Porter, A. T., & Del Valle, S. Y. (2017). Estimating the reproductive number, total outbreak size, and reporting rates for zika epidemics in South and Central America. Epidemics, 21, 63–79.

    Google Scholar 

  91. Siriyasatien, P., Chadsuthi, S., Jampachaisri, K., & Kesorn, K. (2018). Dengue epidemics prediction: A survey of the state-of-the-art based on data science processes. IEEE Access, 6, 53757–53795.

    Google Scholar 

  92. Stolerman, L. M., Maia, P. D., & Kutz, J. N. (2019). Forecasting dengue fever in Brazil: An assessment of climate conditions. PLoS One, 14(8), e0220106.

    Google Scholar 

  93. Stone, L., Olinky, R., & Huppert, A. (2007). Seasonal dynamics of recurrent epidemics. Nature, 446(7135), 533–536.

    Google Scholar 

  94. Subramanian, R., Romeo-Aznar, V., Ionides, E., Codeço, C. T., & Pascual, M. (2020). Predicting re-emergence times of dengue epidemics at low reproductive numbers: Denv1 in Rio de Janeiro, 1986–1990. Journal of the Royal Society Interface, 17(167), 20200273.

    Google Scholar 

  95. Suparit, P., Wiratsudakul, A., & Modchang, C. (2018). A mathematical model for zika virus transmission dynamics with a time-dependent mosquito biting rate. Theoretical Biology and Medical Modelling, 15(1), 1–11.

    Google Scholar 

  96. Tang, B., Xiao, Y., & Wu, J. (2016). Implication of vaccination against dengue for zika outbreak. Scientific Reports, 6(1), 1–14.

    Google Scholar 

  97. Tang, J., Deng, C., & Huang, G.-B. (2015). Extreme learning machine for multilayer perceptron. IEEE Transactions on Neural Networks and Learning systems, 27(4), 809–821.

    Google Scholar 

  98. Tanner, L., Schreiber, M., Low, J. G., Ong, A., Tolfvenstam, T., Lai, Y. L., …et al. (2008). Decision tree algorithms predict the diagnosis and outcome of dengue fever in the early phase of illness. PLoS Neglected Tropical Diseases, 2(3), e196.

    Google Scholar 

  99. Usman, S., Adamu, I. I., & Babando, H. A. (2017). Mathematical model for the transmission dynamics of Zika virus infection with combined vaccination and treatment interventions. Journal of Applied Mathematics and Physics, 5(10), 1964.

    Google Scholar 

  100. Wang, L., & Ranjan, R. (2015). Processing distributed Internet of Things data in clouds. IEEE Cloud Computing, 2(1), 76–80.

    Google Scholar 

  101. WHO. (2020). Vector-borne diseases [Computer software manual]. Retrieved from https://www.who.int/news-room/fact-sheets/detail/vector-borne-diseases. Last accessed: 06 Apr 2021.

  102. WHO. (2021). Ending the neglect to attain the Sustainable Development Goals: a road map for neglected tropical diseases 2021–2030 [Computer software manual]. Retrieved from https://www.who.int/neglected_diseases/resources/who-ucn-ntd-2020.01/en/. Last accessed: 06 Apr 2021.

  103. Wongkoon, S., Jaroensutasinee, M., & Jaroensutasinee, K. (2012). Development of temporal modeling for prediction of dengue infection in Northeastern Thailand. Asian Pacific Journal of Tropical Medicine, 5(3), 249–252.

    Google Scholar 

  104. Yamana, T. K., & Shaman, J. (2020). A framework for evaluating the effects of observational type and quality on vector-borne disease forecast. Epidemics, 30, 100359.

    Google Scholar 

  105. Yaseen, Z. M., Sulaiman, S. O., Deo, R. C., & Chau, K.-W. (2019). An enhanced extreme learning machine model for river flow forecasting: State-of-the-art, practical applications in water resource engineering area and future research direction. Journal of Hydrology, 569, 387–408.

    Google Scholar 

  106. Zhang, D., Peng, X., Pan, K., & Liu, Y. (2019). A novel wind speed forecasting based on hybrid decomposition and online sequential outlier robust extreme learning machine. Energy Conversion and Management, 180, 338–357.

    Google Scholar 

  107. Zhang, G., Patuwo, B. E., & Hu, M. Y. (1998). Forecasting with artificial neural networks:: The state of the art. International Journal of Forecasting, 14(1), 35–62.

    Google Scholar 

  108. Zhang, G. P. (2003). Time series forecasting using a hybrid ARIMA and neural network model. Neurocomputing, 50, 159–175.

    Google Scholar 

  109. Zhang, Y., Wang, T., Liu, K., Xia, Y., Lu, Y., Jing, Q., …Lu, J. (2016). Developing a time series predictive model for dengue in Zhongshan, China based on weather and Guangzhou dengue surveillance data. PLOS Neglected Tropical Diseases, 10(2), 1–17.

    Google Scholar 

  110. Zhao, N., Charland, K., Carabali, M., Nsoesie, E. O., Maheu-Giroux, M., Rees, E., …Zinszer, K. (2020). Machine learning and dengue forecasting: Comparing random forests and artificial neural networks for predicting dengue burden at national and sub-national scales in colombia. PLoS Neglected Tropical Diseases, 14(9), e0008056.

    Google Scholar 

  111. Zhu, B., Wang, L., Wang, H., Cao, Z., Zha, L., Li, Z., …Sun, Y. (2019). Prediction model for dengue fever based on interactive effects between multiple meteorological factors in Guangdong, China (2008–2016). PLoS One, 14, 1–12.

    Google Scholar 

  112. Zhu, G., Liu, T., Xiao, J., Zhang, B., Song, T., Zhang, Y., …et al. (2019). Effects of human mobility, temperature and mosquito control on the spatiotemporal transmission of dengue. Science of the Total Environment, 651, 969–978.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wellington P. dos Santos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

de Lima, C.L. et al. (2022). Intelligent Systems for Dengue, Chikungunya, and Zika Temporal and Spatio-Temporal Forecasting: A Contribution and a Brief Review. In: Pani, S.K., Dash, S., dos Santos, W.P., Chan Bukhari, S.A., Flammini, F. (eds) Assessing COVID-19 and Other Pandemics and Epidemics using Computational Modelling and Data Analysis. Springer, Cham. https://doi.org/10.1007/978-3-030-79753-9_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-79753-9_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-79752-2

  • Online ISBN: 978-3-030-79753-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics