Skip to main content

Tip-Based Nanofabrication for NEMS Devices

  • 923 Accesses

Abstract

Nano-electro-mechanical systems (NEMS) have been extensively studied and widely used in a variety of fields, for its ultrasensitive performance and enabling cutting-edge researches at this minuscule scale. However, existing nanofabrication still suffers from high cost or the difficulty of scaling up. This chapter gives an overview of currently widely employed nanofabrication techniques and then highlights one promising nanofabrication method based on scanning probes—tip-based nanofabrication (TBN). Finally, we conclude on the three major trends of current TBN technology development.

Keywords

  • Tip-based
  • Nanofabrication
  • NEMS

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-79749-2_1
  • Chapter length: 18 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   109.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-79749-2
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Hardcover Book
USD   149.99
Price excludes VAT (USA)
Fig. 1.1
Fig. 1.2
Fig. 1.3
Fig. 1.4
Fig. 1.5
Fig. 1.6
Fig. 1.7
Fig. 1.8

References

  • Almog, R., Zaitsev, S., Shtempluck, O., & Buks, E. (2007). Noise squeezing in a nanomechanical duffing resonator. Physical Review Letters, 98, 1–4. https://doi.org/10.1103/PhysRevLett.98.078103

    CrossRef  Google Scholar 

  • Alsteens, D., Gaub, H. E., Newton, R., Pfreundschuh, M., Gerber, C., & Müller, D. J. (2017). Atomic force microscopy-based characterization and design of biointerfaces. Nature Reviews Materials, 2, 17008. https://doi.org/10.1038/natrevmats.2017.8

    CrossRef  Google Scholar 

  • Arcamone, J., Sansa, M., Verd, J., Uranga, A., Abadal, G., Barniol, N., et al. (2009). Nanomechanical mass sensor for spatially resolved ultrasensitive monitoring of deposition rates in stencil lithography. Small, 5, 176–180.

    CrossRef  Google Scholar 

  • Benumof, R. (1982). Momentum propagation by traveling waves on a string. American Journal of Physics, 50, 20–25. https://doi.org/10.1119/1.12980

    CrossRef  Google Scholar 

  • Blaikie, A., Miller, D., & Alemán, B. J. (2019). A fast and sensitive room-temperature graphene nanomechanical bolometer. Nature Communications, 10, 1–8. https://doi.org/10.1038/s41467-019-12562-2

    CrossRef  Google Scholar 

  • Chang, J., Koh, K., Min, B.-K., Lee, S. J., Kim, J., & Lin, L. (2013). Synthesis and bidirectional frequency tuning of cantilever-shape nano resonators using a focused ion beam. ACS Applied Materials & Interfaces, 5, 9684–9690.

    CrossRef  Google Scholar 

  • Chaste, J., Eichler, A., Moser, J., Ceballos, G., Rurali, R., & Bachtold, A. (2012). A nanomechanical mass sensor with yoctogram resolution. Nature Nanotechnology, 7, 301–304. https://doi.org/10.1038/nnano.2012.42

    CrossRef  Google Scholar 

  • Cheng, B., Emboras, A., Salamin, Y., Ducry, F., Ma, P., Fedoryshyn, Y., et al. (2019). Ultra compact electrochemical metallization cells offering reproducible atomic scale memristive switching. Communications on Physics, 2, 1–9.

    Google Scholar 

  • Chou, S. Y., Krauss, P. R., & Renstrom, P. J. (1995). Imprint of sub-25 nm vias and trenches in polymers. Applied Physics Letters, 67, 3114–3116.

    CrossRef  Google Scholar 

  • Chou, S. Y., Krauss, P. R., & Renstrom, P. J. (1996). Imprint lithography with 25-nanometer resolution. Science (80- ), 272, 85–87.

    CrossRef  Google Scholar 

  • Cleland, A. N., & Roukes, M. L. (1998). A nanometre-scale mechanical electrometer. Nature, 392, 160–162. https://doi.org/10.1038/32373

    CrossRef  Google Scholar 

  • Coronado, E., Forment-Aliaga, A., Navarro-Moratalla, E., Pinilla-Cienfuegos, E., & Castellanos-Gomez, A. (2013). Nanofabrication of TaS 2 conducting layers nanopatterned with ta 2 O 5 insulating regions via AFM. Journal of Materials Chemistry C, 1, 7692–7694.

    CrossRef  Google Scholar 

  • Craighead, H. G. (2000). Nanoelectromechanical systems. Science (80- ), 290, 1532–1535.

    CrossRef  Google Scholar 

  • Cui, Z. (2016). Nanofabrication: Principles, capabilities and limits. Springer.

    Google Scholar 

  • Dagata, J. A., Schneir, J., Harary, H. H., Evans, C. J., Postek, M. T., & Bennett, J. (1990). Modification of hydrogen-passivated silicon by a scanning tunneling microscope operating in air. Applied Physics Letters, 56, 2001–2003.

    CrossRef  Google Scholar 

  • De Alba, R., Massel, F., Storch, I. R., Abhilash, T. S., Hui, A., McEuen, P. L., et al. (2016). Tunable phonon-cavity coupling in graphene membranes. Nature Nanotechnology, 11, 741–746. https://doi.org/10.1038/nnano.2016.86

    CrossRef  Google Scholar 

  • Dohn, S., Svendsen, W., Boisen, A., & Hansen, O. (2007). Mass and position determination of attached particles on cantilever based mass sensors. The Review of Scientific Instruments, 78, 1–4. https://doi.org/10.1063/1.2804074

    CrossRef  Google Scholar 

  • Dominguez-Medina, S., Fostner, S., Defoort, M., Sansa, M., Stark, A., Halim, M. A., et al. (2018). Neutral mass spectrometry of virus capsids above 100 megadaltons with nanomechanical resonators. Science (80- ), 362, 918–922. https://doi.org/10.1126/science.aat6457

    CrossRef  Google Scholar 

  • Duraffourg, L., & Arcamone, J. (2015). Nanoelectromechanical systems. Wiley.

    CrossRef  Google Scholar 

  • Eichler, A., Heugel, T. L., Leuch, A., Degen, C. L., Chitra, R., & Zilberberg, O. (2018). A parametric symmetry breaking transducer. Applied Physics Letters, 112, 233105. https://doi.org/10.1063/1.5031058

    CrossRef  Google Scholar 

  • Espinosa, F. M., Ryu, Y. K., Marinov, K., Dumcenco, D., Kis, A., & Garcia, R. (2015). Direct fabrication of thin layer MoS2 field-effect nanoscale transistors by oxidation scanning probe lithography. Applied Physics Letters, 106, 103503.

    CrossRef  Google Scholar 

  • Fan, X., Forsberg, F., Smith, A. D., Schröder, S., Wagner, S., Rödjegård, H., et al. (2019). Graphene ribbons with suspended masses as transducers in ultra-small nanoelectromechanical accelerometers. Nature Electronics, 2, 394–404. https://doi.org/10.1038/s41928-019-0287-1

    CrossRef  Google Scholar 

  • Fan, X., Smith, A. D., Forsberg, F., Wagner, S., Schröder, S., Akbari, S. S. A., et al. (2020). Manufacture and characterization of graphene membranes with suspended silicon proof masses for MEMS and NEMS applications. Microsystems & Nanoengineering, 6. https://doi.org/10.1038/s41378-019-0128-4

  • Gotoh, Y., Matsumoto, K., Maeda, T., Cooper, E. B., Manalis, S. R., Fang, H., et al. (2000). Experimental and theoretical results of room-temperature single-electron transistor formed by the atomic force microscope nano-oxidation process. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 18, 1321–1325.

    CrossRef  Google Scholar 

  • Grivet, P., Hawkes, P. W., & Septier, A. (2013). Electron optics. Elsevier.

    Google Scholar 

  • Guerra, D. N., Dunn, T., & Mohanty, P. (2009). Signal amplification by 1/f noise in silicon-based nanomechanical resonators. Nano Letters, 9, 3096–3099.

    CrossRef  Google Scholar 

  • Güttinger, J., Noury, A., Weber, P., Eriksson, A. M., Lagoin, C., Moser, J., et al. (2017). Energy-dependent path of dissipation in nanomechanical resonators. Nature Nanotechnology, 12, 631–636. https://doi.org/10.1038/nnano.2017.86

    CrossRef  Google Scholar 

  • Haller, I., Hatzakis, M., & Srinivasan, R. (1968). High-resolution positive resists for electron-beam exposure. IBM Journal of Research and Development, 12, 251–256.

    CrossRef  Google Scholar 

  • Hanay, M. S., Kelber, S., Naik, A. K., Chi, D., Hentz, S., Bullard, E. C., et al. (2012). Single-protein nanomechanical mass spectrometry in real time. Nature Nanotechnology, 7, 602–608. https://doi.org/10.1038/nnano.2012.119

    CrossRef  Google Scholar 

  • Howell, S. T., Grushina, A., Holzner, F., & Brugger, J. (2020). Thermal scanning probe lithography—A review. Microsystems & Nanoengineering, 6, 1–24.

    CrossRef  Google Scholar 

  • Hu, H. (2014). Nano-electro-mechanical systems fabricated by tip-based nanofabrication. University of Illinois at Urbana-Champaign.

    Google Scholar 

  • Hu, S., Hamidi, A., Altmeyer, S., Köster, T., Spangenberg, B., & Kurz, H. (1998). Fabrication of silicon and metal nanowires and dots using mechanical atomic force lithography. Journal of Vacuum Science & Technology, B: Microelectronics and Nanometer Structures—Processing, Measurement, and Phenomena, 16, 2822–2824.

    CrossRef  Google Scholar 

  • Hu, H., Mohseni, P. K., Pan, L., Li, X., Somnath, S., Felts, J. R., et al. (2013). Fabrication of arbitrarily shaped silicon and silicon oxide nanostructures using tip-based nanofabrication. Journal of Vacuum Science & Technology, B: Nanotechnology & Microelectronics: Materials, Processing, Measurement, & Phenomena, 31, 06FJ01.

    CrossRef  Google Scholar 

  • Hu, H., Cho, H., Somnath, S., Vakakis, A. F., & King, W. P. (2014a). Silicon nano-mechanical resonators fabricated by using tip-based nanofabrication. Nanotechnology, 25, 275301.

    CrossRef  Google Scholar 

  • Hu, H., Zhuo, Y., Oruc, M. E., Cunningham, B. T., & King, W. P. (2014b). Nanofluidic channels of arbitrary shapes fabricated by tip-based nanofabrication. Nanotechnology, 25, 455301.

    CrossRef  Google Scholar 

  • Hua, Y., Saxena, S. R., Henderson, C. L., & King, W. P. (2007). Nanoscale thermal lithography by local polymer decomposition using a heated atomic force microscope cantilever tip. Journal of Micro/Nanolithography, MEMS and MOEMS, 6, 23012.

    CrossRef  Google Scholar 

  • Janzen, A., Poshtiban, S., Singh, A., & Evoy, S. (2012). Fabrication of nanoresonator biosensing arrays using nanoimprint lithography. Journal of Micro/Nanolithography, MEMS and MOEMS, 11, 23013.

    CrossRef  Google Scholar 

  • Kirsanov, A., Kiselev, A., Stepanov, A., & Polushkin, N. (2003). Femtosecond laser-induced nanofabrication in the near-field of atomic force microscope tip. Journal of Applied Physics, 94, 6822–6826.

    CrossRef  Google Scholar 

  • Kyoung Ryu, Y., Aitor Postigo, P., Garcia, F., & Garcia, R. (2014). Fabrication of sub-12 nm thick silicon nanowires by processing scanning probe lithography masks. Applied Physics Letters, 104, 223112.

    CrossRef  Google Scholar 

  • Li, M., Bhiladvala, R. B., Morrow, T. J., Sioss, J. A., Lew, K.-K., Redwing, J. M., et al. (2008). Bottom-up assembly of large-area nanowire resonator arrays. Nature Nanotechnology, 3, 88–92.

    CrossRef  Google Scholar 

  • Liu, H., Hoeppener, S., & Schubert, U. S. (2016). Nanoscale materials patterning by local electrochemical lithography. Advanced Engineering Materials, 18, 890–902.

    CrossRef  Google Scholar 

  • Mahboob, I., & Yamaguchi, H. (2008). Piezoelectrically pumped parametric amplification and Q enhancement in an electromechanical oscillator. Applied Physics Letters, 92, 1–4. https://doi.org/10.1063/1.2903709

    CrossRef  Google Scholar 

  • Mahboob, I., Okamoto, H., Yamaguchi, H., Onomitsu, K., & Yamaguchi, H. (2014). Two-mode thermal-noise squeezing in an electromechanical resonator. Physical Review Letters, 113, 167203. https://doi.org/10.1103/PhysRevLett.113.167203

    CrossRef  Google Scholar 

  • Malshe, A. P., Rajurkar, K. P., Virwani, K. R., Taylor, C. R., Bourell, D. L., Levy, G., et al. (2010). Tip-based nanomanufacturing by electrical, chemical, mechanical and thermal processes. CIRP Annals, 59, 628–651.

    CrossRef  Google Scholar 

  • Matheny, M. H., Emenheiser, J., Fon, W., Chapman, A., Salova, A., Rohden, M., et al. (2019). Exotic states in a simple network of nanoelectromechanical oscillators. Science (80- ), 363, eaav7932. https://doi.org/10.1126/science.aav7932

    MathSciNet  CrossRef  Google Scholar 

  • Mathew, J. P., Patel, R. N., Borah, A., Vijay, R., & Deshmukh, M. M. (2016). Dynamical strong coupling and parametric amplification in mechanical modes of graphene drums. Nature Nanotechnology, 11, 747–751. https://doi.org/10.1038/nnano.2016.94

    CrossRef  Google Scholar 

  • Meireles, L. M., Neto, E. G. S., Ferrari, G. A., Neves, P. A. A., Gadelha, A. C., Silvestre, I., et al. (2020). Graphene electromechanical water sensor: The Wetristor. Advanced Electronic Materials, 6, 1–6. https://doi.org/10.1002/aelm.201901167

    CrossRef  Google Scholar 

  • Milner, A. A., Zhang, K., & Prior, Y. (2008). Floating tip nanolithography. Nano Letters, 8, 2017–2022.

    CrossRef  Google Scholar 

  • Naik, A. K., Hanay, M. S., Hiebert, W. K., Feng, X. L., & Roukes, M. L. (2009). Towards single-molecule nanomechanical mass spectrometry. Nature Nanotechnology, 4, 445–450. https://doi.org/10.1038/nnano.2009.152

    CrossRef  Google Scholar 

  • Neubeck, S., Ponomarenko, L. A., Freitag, F., Giesbers, A. J. M., Zeitler, U., Morozov, S. V., et al. (2010). From one electron to one hole: Quasiparticle counting in graphene quantum dots determined by electrochemical and plasma etching. Small, 6, 1469–1473.

    CrossRef  Google Scholar 

  • Olcum, S., Cermak, N., Wasserman, S. C., & Manalis, S. R. (2015). High-speed multiple-mode mass-sensing resolves dynamic nanoscale mass distributions. Nature Communications, 6, 7070. https://doi.org/10.1038/ncomms8070

    CrossRef  Google Scholar 

  • Papadopoulos, C. (2016). Nanofabrication: Principles and applications. Springer.

    CrossRef  Google Scholar 

  • Papariello, L., Eichler, A., Zilberberg, O., Leuch, A., Degen, C. L., & Chitra, R. (2016). Parametric symmetry breaking in a nonlinear resonator. Physical Review Letters, 117, 1–5. https://doi.org/10.1103/physrevlett.117.214101

    CrossRef  Google Scholar 

  • Paul, P. C., Knoll, A. W., Holzner, F., Despont, M., & Duerig, U. (2011). Rapid turnaround scanning probe nanolithography. Nanotechnology, 22, 275306.

    CrossRef  Google Scholar 

  • Piner, R. D., Zhu, J., Xu, F., Hong, S., & Mirkin, C. A. (1999). “Dip-pen” nanolithography. Science (80- ), 283, 661–663.

    CrossRef  Google Scholar 

  • Prasad, P., Arora, N., & Naik, A. (2017). Parametric amplification in MoS2 drum resonator. Nanoscale, 9, 18299–18304. https://doi.org/10.1039/C7NR05721K

    CrossRef  Google Scholar 

  • Rawlings, C., Ryu, Y. K., Rüegg, M., Lassaline, N., Schwemmer, C., Duerig, U., et al. (2018). Fast turnaround fabrication of silicon point-contact quantum-dot transistors using combined thermal scanning probe lithography and laser writing. Nanotechnology, 29, 505302.

    CrossRef  Google Scholar 

  • Ryu, Y. K., & Garcia, R. (2017). Advanced oxidation scanning probe lithography. Nanotechnology, 28, 142003.

    CrossRef  Google Scholar 

  • Ryu, Y. K., Chiesa, M., & Garcia, R. (2013). Electrical characteristics of silicon nanowire transistors fabricated by scanning probe and electron beam lithographies. Nanotechnology, 24, 315205.

    CrossRef  Google Scholar 

  • Sader, J. E., Hanay, M. S., Neumann, A. P., & Roukes, M. L. (2018). Mass spectrometry using nanomechanical systems: Beyond the point-mass approximation. Nano Letters, 18, 1608–1614. https://doi.org/10.1021/acs.nanolett.7b04301

    CrossRef  Google Scholar 

  • Sage, E., Sansa, M., Fostner, S., Defoort, M., Gély, M., Naik, A. K., et al. (2018). Single-particle mass spectrometry with arrays of frequency-addressed nanomechanical resonators. Nature Communications, 9, 3283. https://doi.org/10.1038/s41467-018-05783-4

    CrossRef  Google Scholar 

  • Schmid, S., Villanueva, L. G., & Roukes, M. L. (2016). Fundamentals of nanomechanical resonators. Springer International. https://doi.org/10.1007/978-3-319-28691-4

    CrossRef  Google Scholar 

  • Sheehan, P. E., Whitman, L. J., King, W. P., & Nelson, B. A. (2004). Nanoscale deposition of solid inks via thermal dip pen nanolithography. Applied Physics Letters, 85, 1589–1591.

    CrossRef  Google Scholar 

  • Shirakashi, J.-I., & Takemura, Y. (2004). Ferromagnetic ultra-small tunnel junction devices fabricated by scanning probe microscope (SPM) local oxidation. IEEE Transactions on Magnetics, 40, 2640–2642.

    CrossRef  Google Scholar 

  • Sievilä, P., Chekurov, N., & Tittonen, I. (2010). The fabrication of silicon nanostructures by focused-ion-beam implantation and TMAH wet etching. Nanotechnology, 21, 145301.

    CrossRef  Google Scholar 

  • Sigrist, M., Fuhrer, A., Ihn, T., Ensslin, K., Driscoll, D. C., & Gossard, A. C. (2004). Multiple layer local oxidation for fabricating semiconductor nanostructures. Applied Physics Letters, 85, 3558–3560.

    CrossRef  Google Scholar 

  • Singh, R., Nicholl, R. J. T., Bolotin, K. I., & Ghosh, S. (2018). Motion transduction with thermo-mechanically squeezed graphene resonator modes. Nano Letters, 18, 6719–6724. https://doi.org/10.1021/acs.nanolett.8b02293

    CrossRef  Google Scholar 

  • Skaug, M. J., Schwemmer, C., Fringes, S., Rawlings, C. D., & Knoll, A. W. (2018). Nanofluidic rocking Brownian motors. Science (80- ), 359, 1505–1508.

    CrossRef  Google Scholar 

  • Steele, G. A., Huttel, A. K., Witkamp, B., Poot, M., Meerwaldt, H. B., Kouwenhoven, L. P., et al. (2009). Strong coupling between single-electron tunneling and nanomechanical motion. Science (80- ), 325, 1103–1107. https://doi.org/10.1126/science.1176076

    CrossRef  Google Scholar 

  • Sulkko, J., Sillanpaa, M. A., Hakkinen, P., Lechner, L., Helle, M., Fefferman, A., et al. (2010). Strong gate coupling of high-Q nanomechanical resonators. Nano Letters, 10, 4884–4889.

    CrossRef  Google Scholar 

  • Sun, J., Muruganathan, M., & Mizuta, H. (2016). Room temperature detection of individual molecular physisorption using suspended bilayer graphene. Science Advances, 2, 1–8. https://doi.org/10.1126/sciadv.1501518

    CrossRef  Google Scholar 

  • Szoszkiewicz, R., Okada, T., Jones, S. C., Li, T.-D., King, W. P., Marder, S. R., et al. (2007). High-speed, sub-15 nm feature size thermochemical nanolithography. Nano Letters, 7, 1064–1069.

    CrossRef  Google Scholar 

  • Thundat, T., Nagahara, L. A., Oden, P. I., Lindsay, S. M., George, M. A., & Glaunsinger, W. S. (1990). Modification of tantalum surfaces by scanning tunneling microscopy in an electrochemical cell. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 8, 3537–3541.

    CrossRef  Google Scholar 

  • Tseng, A. A. (2011). Tip-based nanofabrication: Fundamentals and applications. Springer.

    CrossRef  Google Scholar 

  • Ventra, M., Evoy, S., & Heflin, J. R. (2006). Introduction to nanoscale science and technology. Springer Science & Business Media.

    Google Scholar 

  • Vettiger, P., Despont, M., Drechsler, U., Durig, U., Haberle, W., Lutwyche, M. I., et al. (2000). The “millipede”—More than thousand tips for future AFM storage. IBM Journal of Research and Development, 44, 323–340.

    CrossRef  Google Scholar 

  • Wolf, H., Rawlings, C., Mensch, P., Hedrick, J. L., Coady, D. J., Duerig, U., et al. (2015). Sub-20 nm silicon patterning and metal lift-off using thermal scanning probe lithography. Journal of Vacuum Science & Technology, B: Nanotechnology & Microelectronics: Materials, Processing, Measurement, & Phenomena, 33, 02B102. https://doi.org/10.1116/1.4901413

    CrossRef  Google Scholar 

  • Yuksel, M., Orhan, E., Yanik, C., Ari, A. B., Demir, A., & Hanay, M. S. (2019). Nonlinear nanomechanical mass spectrometry at the single-nanoparticle level. Nano Letters, 19, 3583–3589. https://doi.org/10.1021/acs.nanolett.9b00546

    CrossRef  Google Scholar 

  • Zhang, K., Fu, Q., Pan, N., Yu, X., Liu, J., Luo, Y., et al. (2012). Direct writing of electronic devices on graphene oxide by catalytic scanning probe lithography. Nature Communications, 3, 1–6.

    Google Scholar 

  • Zheng, X., Calò, A., Albisetti, E., Xiangyu, L., Alharbi, A. S. M., Arefe, G., et al. (2019). Patterning metal contacts on monolayer MoS 2 with vanishing Schottky barriers using thermal nanolithography. Nature Electronics, 2, 17–25.

    CrossRef  Google Scholar 

  • Zheng, X., Calò, A., Cao, T., Liu, X., Huang, Z., Das, P. M., et al. (2020). Spatial defects nanoengineering for bipolar conductivity in MoS 2. Nature Communications, 11, 1–12.

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huan Hu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Pu, D., Hu, H. (2022). Tip-Based Nanofabrication for NEMS Devices. In: Yang, Z. (eds) Advanced MEMS/NEMS Fabrication and Sensors. Springer, Cham. https://doi.org/10.1007/978-3-030-79749-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-79749-2_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-79748-5

  • Online ISBN: 978-3-030-79749-2

  • eBook Packages: EngineeringEngineering (R0)