Skip to main content

A Modelling Workflow for Predictive Control in Residential Buildings

  • Chapter
  • First Online:

Part of the book series: Green Energy and Technology ((GREEN))

Abstract

Despite a large body of research, the widespread application of Model Predictive Control (MPC) to residential buildings has yet to be realised. The modelling challenge is often cited as a significant obstacle. This chapter establishes a systematic workflow, from detailed simulation model development to control-oriented model generation to act as a guide for practitioners in the residential sector. The workflow begins with physics-based modelling methods for analysis and evaluation. Following this, model-based and data-driven techniques for developing low-complexity, control-oriented models are outlined. Through sections detailing these different stages, a case study is constructed, concluding with a final section in which MPC strategies based on the proposed methods are evaluated, with a price-aware formulation producing a reduction in operational space-heating cost of 11%. The combination of simulation model development, control design and analysis in a single workflow can encourage a more rapid uptake of MPC in the sector.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Al Essa, M. J. M. (2019). Home energy management of thermostatically controlled loads and photovoltaic-battery systems. Energy, 176, 742–752.

    Article  Google Scholar 

  • Anderson, T. N., Duke, M., Morrison, G. L., & Carson, J. K. (2009). Performance of a building integrated photovoltaic/thermal (BIPVT) solar collector. Solar Energy, 83, 445–455.

    Article  Google Scholar 

  • Astolfi, A. (2010). Model reduction by moment matching for linear and nonlinear systems. IEEE Transactions Automatic Control, 55, 2321–2336.

    Article  MathSciNet  Google Scholar 

  • Atam, E. (2017). Current software barriers to advanced model-based control design for energy-efficient buildings. Renewable and Sustainable Energy Reviews, 73, 1031–1040.

    Article  Google Scholar 

  • Atam, E., & Helsen, L. (2016). Control-oriented thermal modeling of multizone buildings: Methods and issues: Intelligent control of a building system. IEEE Control Systems Magazine, 36(3), 86–111.

    Article  MathSciNet  Google Scholar 

  • Barone, G., Buonomano, A., Calise, F., Forzano, C., & Palombo, A. (2019). Building to vehicle to building concept toward a novel zero energy paradigm: Modelling and case studies. Renewable and Sustainable Energy Reviews, 101, 625–648.

    Article  Google Scholar 

  • Bünning, F., Huber, B., Heer, P., Aboudonia, A., & Lygeros, J. (2020). Experimental demonstration of data predictive control for energy optimization and thermal comfort in buildings. Energy and Buildings, 211, 109792.

    Article  Google Scholar 

  • Buttitta, G., Turner, W. J. N., Neu, O., & Finn, D. P. (2019). Development of occupancy-integrated archetypes: Use of data mining clustering techniques to embed occupant behaviour profiles in archetypes. Energy and Buildings, 198, 84–99.

    Article  Google Scholar 

  • CDBB. (2018). The gemini priciples (vol. 15). Cambridge: University of Cambridge.

    Google Scholar 

  • Coakley, D., Raftery, P., & Keane, M. (2014). A review of methods to match building energy simulation models to measured data. Renewable and Sustainable Energy Reviews, 37, 123–141.

    Article  Google Scholar 

  • Coulson, J., Lygeros, J., & Döfler, F. (2020). Distributionally robust chance constrained data-enabled predictive control. arXiv: 2006.01702 [math.OC] (pp. 1–14).

    Google Scholar 

  • Chow, T. T. (2010). A review on photovoltaic/thermal hybrid solar technology. Appl Energy, 87, 365–379.

    Article  Google Scholar 

  • Deng, K., Goyal, S., Barooah, P., & Mehta, P. G. (2014). Structure-preserving model reduction of nonlinear building thermal models. Automatica, 50, 1188–1195.

    Article  MathSciNet  Google Scholar 

  • DOE. (2017). EnergyPlus — EnergyPlus. U.S. Department of Energy’s. Retrieved May 10, 2018. https://www.energyplus.net/

  • Drgoňa, J., Arroyo, J., Cupeiro Figueroa, I., Blum, D. Arendt, K., Kim, D., Perarnau Oll, E., Oravec, J., Michael, W., Vrabie, D. L., & Helsen, L. (2020). All you need to know about model predictive control for buildings. Annual Reviews in Control, 50, 190–232.

    Article  MathSciNet  Google Scholar 

  • Duffie, J. A., & Beckman, W. A. (2013). Solar engineering of thermal. Hoboken: Wiley.

    Book  Google Scholar 

  • EASME (2017). TABULA WebTool, Retrieved Dec. 06, 2021, from https://webtool.building-typology.eu/#bm

    Google Scholar 

  • Energy Savings Trust. (2008). Measurement of domestic hot water consumption in dwellings. Retrieved Dec. 06, 2021, from https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/48188/3147-measure-domestic-hot-water-consump.pdf

  • Florschuetz, L. W. (1976). Extension of the Hottel-Whillier-Bliss model to the analysis of combined photovoltaic/thermal flat plate collectors. Solar Energy, 22, 361–366.

    Article  Google Scholar 

  • Georgiou, T. T. (1988). On the computation of the gap metric. In: Proceedings of the IEEE Conference on Decision and Control.

    Google Scholar 

  • Gonzato, S., Chimento, J., O’Dwyer, E., Bustos-Turu, G., Acha, S., & Shah, N. (2019). Hierarchical price coordination of heat pumps in a building network controlled using model predictive control. Energy and Buildings, 202, 109421.

    Article  Google Scholar 

  • Greater London Authority. (2018). Zero carbon London: A 1.5oC compatible plan.

    Google Scholar 

  • Harish, V. S. K. V., & Kumar, A. (2016). A review on modeling and simulation of building energy systems. Renewable and Sustainable Energy Reviews, 56, 1272–1292.

    Article  Google Scholar 

  • Henderson, J., & Hart, J. (2015). BREDEM 2012: A technical description of the BRE Domestic Energy Model - Version 1.1. Retrieved Dec. 06, 2021, from https://www.bre.co.uk/filelibrary/bredem/BREDEM-2012-specification.pdf

  • Kathirgamanathan, A., De Rosa, M., Mangina, E., & Finn, D. P. (2021). Data-driven predictive control for unlocking building energy flexibility: A review. Renew Sustain Energy RevRenewable and Sustainable Energy Reviews, 135, 110120.

    Article  Google Scholar 

  • Killian, M., & Kozek, M. (2016). Ten questions concerning model predictive control for energy efficient buildings. Building and Environment, 105, 403–412.

    Article  Google Scholar 

  • Li, X., & Wen, J. (2014). Review of building energy modeling for control and operation. Renewable and Sustainable Energy Reviews, 37, 517–537.

    Article  Google Scholar 

  • Lin, Y., Middelkoop, T., & Barooah, P. (2012). Issues in identification of control-oriented thermal models of zones in multi-zone buildings. In: Proceedings of the IEEE Conference on Decision and Control (pp. 6932–6937). Piscataway: IEEE.

    Google Scholar 

  • Ljung, L. (1988). System identification toolbox. Matlab user’s Guide.

    Google Scholar 

  • Lyons, B., O’Dwyer, E., & Shah, N. (2020). Model reduction for model predictive control of district and communal heating systems within cooperative energy systems. Energy, 197, 117178.

    Article  Google Scholar 

  • Ma, Y., Kelman, A., Daly, A., & Borelli, F. (2012). Predictive control for energy efficient buildings with thermal storage. IEEE Control Systems Magazine, 32, 44–64.

    MathSciNet  MATH  Google Scholar 

  • Maddalena, E. T., Lian, Y., & Jones, C. N. (2020). Data-driven methods for building control – A review and promising future directions. Control Engineering Practice, 95, 104211.

    Article  Google Scholar 

  • McKenna, E., & Thomson, M. (2016). High-resolution stochastic integrated thermal-electrical domestic demand model. Applied Energy, 165, 445–461.

    Article  Google Scholar 

  • Morosan, P.-D., Bourdais, R., Dumur, D., & Buisson, J. (2010). Distributed model predictive control for building temperature regulation. In: American Control Conference (ACC), 2010 (pp. 3174–3179)

    Google Scholar 

  • Octopus Energy agile pricing explained (2019). Retrieved Oct. 26, 2020, from https://octopus.energy/blog/agile-pricing-explained/

  • O’Dwyer, E., Pan, I., Acha, S., Gibbons, S., Shah, N., DeJong, M. J., Schooling, J. M., & Viggiani, G. M. B. (2019). Modelling and evaluation of multi-vector energy networks in smart cities. In: International Conference on Smart Infrastructure and Construction 2019 (ICSIC) (pp. 161–168). London: ICE Publishing.

    Chapter  Google Scholar 

  • O’Dwyer, E., Pan, I., Charlesworth, R., Butler, S., & Shah, N. (2020). Integration of an energy management tool and digital twin for coordination and control of multi-vector smart energy systems. Sustainable Cities and Society, 62, 102412.

    Article  Google Scholar 

  • Oliveira Panão, M. J. N., Mateus, N. M., & Carrilho da Graça, G. (2019). Measured and modeled performance of internal mass as a thermal energy battery for energy flexible residential buildings. Applied Energy, 239, 252–267.

    Article  Google Scholar 

  • Pedersen, T. H., Hedegaard, R. E., Knudsen, M. D., & Petersen, S. (2017). Comparison of centralized and decentralized model predictive control in a building retrofit scenario. In: Energy Procedia, 122 (pp. 979–984).

    Google Scholar 

  • Pepe, D., Bianchini, G., & Vicino, A. (2018). Estimating PV forecasting models from power data. In: 2018 IEEE International Energy Conference, ENERGYCON 2018 (pp. 1–6). Piscataway: IEEE.

    Google Scholar 

  • Rätz, M., Javadi, A. P., Baranski, M., Finkbeiner, K., & Müller, D. (2019). Automated data-driven modeling of building energy systems via machine learning algorithms. Energy and Buildings, 202, 109384.

    Article  Google Scholar 

  • Shaikh, P. H., Nor, N. B. M., Nallagownden, P., Elam, I., & Ibrahim, T. (2014). A review on optimized control systems for building energy and comfort management of smart sustainable buildings. Renewable and Sustainable Energy Reviews, 34, 409–429.

    Article  Google Scholar 

  • Simulationresearch. (2016). FrontPage - bcvtb. Retrieved May 13, 2018 from https://simulationresearch.lbl.gov/bcvtb

  • Staffell, I., Brett, D., Brandon, N., & Hawkes, A. (2012). A review of domestic heat pumps. Energy & Environmental Science, 5, 9291.

    Article  Google Scholar 

  • Sturzenegger, D., Gyalistras, D., Semeraro, V., Morari, M., & Smith, R. S. (2014). BRCM matlab toolbox: Model generation for model predictive building control. In: American Control Conference (pp. 1063–1069).

    Google Scholar 

  • Sturzenegger, D., Gyalistras, D., Morari, M., & Smith, R. S. (2016). Model predictive climate control of a Swiss office building: Implementation, results, and cost–benefit analysis. IEEE Transactions on Control Systems Technology, 24, 1–12. Retrieved from https://doi.org/10.1109/TCST.2015.2415411

    Article  Google Scholar 

  • Worthmann, K., Kellett, C. M., Braun, P., Grüne, L., & Weller, S. R. (2015). Distributed and decentralized control of residential energy systems incorporating battery storage. IEEE Transactions on Smart Grid, 6, 1914–1923.

    Article  Google Scholar 

  • Zimmermann J-P, Evans M, Griggs, J., King, N., Harding, L., Roberts, P., & Evans, C. (2012). Household electricity survey: A study of domestic electrical product usage (pp. 213–214.). Intertek Testing & Certification Ltd.

    Google Scholar 

  • Zwickel, P., Engelmann, A., Groll, L., Veit Hagenmeyer, Sauer, D., & Faulwasser, T. (2019). A comparison of economic MPC formulations for thermal building control. In 2019 IEEE PES Innovative Smart Grid Technologies Europe (ISGT-Europe) (pp. 1–5). Piscataway: IEEE.

    Google Scholar 

Download references

Acknowledgements

This work has received funding from the EPSRC (Engineering and Physical Sciences) under the Active Building Centre project (reference number: EP/V012053/1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. O’Dwyer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

O’Dwyer, E., Atam, E., Falugi, P., Kerrigan, E.C., Zagorowska, M.A., Shah, N. (2022). A Modelling Workflow for Predictive Control in Residential Buildings. In: Vahidinasab, V., Mohammadi-Ivatloo, B. (eds) Active Building Energy Systems. Green Energy and Technology. Springer, Cham. https://doi.org/10.1007/978-3-030-79742-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-79742-3_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-79741-6

  • Online ISBN: 978-3-030-79742-3

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics