Avila, N.F., Figueroa, G., Chu, C.-C.: NTL detection in electric distribution systems using the maximal overlap discrete wavelet-packet transform and random undersampling boosting. IEEE Trans. Power Syst. 33(6), 7171–7180 (2018)
Google Scholar
Jokar, P., Arianpoo, N., Leung, V.C.M.: Electricity theft detection in AMI using customers’ consumption patterns. IEEE Trans. Smart Grid 7(1), 216–226 (2015)
Google Scholar
Punmiya, R., Choe, S.: Energy theft detection using gradient boosting theft detector with feature engineering-based preprocessing. IEEE Trans. Smart Grid 10(2), 2326–2329 (2019)
CrossRef
Google Scholar
Khan, Z.A., Adil, M., Javaid, N., Saqib, M.N., Shafiq, M., Choi, J.-G.: Electricity theft detection using supervised learning techniques on smart meter data. Sustainability 12(19), 8023 (2020)
Google Scholar
Arif, A., Javaid, N., Aldegheishem, A., Alrajeh, N.: Big data analytics for identifying electricity theft using machine learning approaches in micro grids for smart communities. Concurrency Comput. Pract. Experience, 1532–0634 (2021)
Google Scholar
Ghori, K.M., Abbasi, R.A., Awais, M., Imran, M., Ullah, A., Szathmary, L.: Performance analysis of different types of machine learning classifiers for non-technical loss detection. IEEE Access 8, 16033–16048 (2019)
Google Scholar
Razavi, R., Gharipour, A., Fleury, M., Akpan, I.J.: A practical feature-engineering framework for electricity theft detection in smart grids. Appl. Energy 238 , 481–494 (2019)
Google Scholar
Kong, X., Zhao, X., Liu, C., Li, Q., Dong, D.L., Li, Y.: Electricity theft detection in low-voltage stations based on similarity measure and DT-KSVM. Int. J. Electr. Power Energy Syst.125, 106544 (2021)
Google Scholar
Buzau, M.M., Tejedor-Aguilera, J., Cruz-Romero, P., Gómez-Expósito, A.: Detection of non-technical losses using smart meter data and supervised learning. IEEE Trans. Smart Grid 10(3), 2661–2670 (2018)
Google Scholar
Buzau, M.-M., Tejedor-Aguilera, J., Cruz-Romero, P., Gómez-Expósito, A.: Hybrid deep neural networks for detection of non-technical losses in electricity smart meters. IEEE Trans. Power Syst. 35(2), 1254–1263 (2019)
CrossRef
Google Scholar
Zheng, Z., Yang, Y., Niu, X., Dai, H.-N., Zhou, Y.: Wide and deep convolutional neural networks for electricity-theft detection to secure smart grids. IEEE Trans. Ind. Inform. 14(4), 1606–1615 (2017)
CrossRef
Google Scholar
Huang, Y., Qifeng, X.: Electricity theft detection based on stacked sparse denoising autoencoder. Int. J. Electr. Power Energy Syst. 125, 106448 (2021)
Google Scholar
Fenza, G., Gallo, M., Loia, V.: Drift-aware methodology for anomaly detection in smart grid. IEEE Access 7, 9645–9657 (2019)
CrossRef
Google Scholar
Bhat, R.R., Trevizan, R.D., Sengupta, R., Li, X., Bretas, A.: Identifying nontechnical power loss via spatial and temporal deep learning. In: 2016 15th IEEE International Conference on Machine Learning and Applications, pp. 272–279 (2016)
Google Scholar
Hasan, M., Toma, R.N., Nahid, A.-A., Islam, M.M., Kim, J.-M.: Electricity theft detection in smart grid systems: a CNN-LSTM based approach. Energies 12(17), 3310 (2019)
Google Scholar
Ramos, C.C.O., Rodrigues, D., de Souza, A.N., Papa, J.P.: On the study of commercial losses in Brazil: a binary black hole algorithm for theft characterization. IEEE Trans. Smart Grid 9(2), 676–683 (2016)
Google Scholar
Coma-Puig, B., Carmona, J.: Bridging the gap between energy consumption and distribution through non-technical loss detection. Energies 12(9), 1748 (2019)
CrossRef
Google Scholar
Hu, T., Guo, Q., Sun, H., Huang, T.-E., Lan, J.: Nontechnical losses detection through coordinated BIWGAN and SVDD. IEEE Trans. Neural Netw. Learn. Syst. 32, 1866–1880 (2020)
Google Scholar
He, H., Bai, Y., Garcia, E.A., Li, S.: ADASYN: adaptive synthetic sampling approach for imbalanced learning. In: 2008 IEEE International Joint Conference on Neural Networks, pp. 1322–1328 (2008)
Google Scholar
Javaid, N., Jan, N., Javed, M.U.: An adaptive synthesis to handle imbalanced big data with deep Siamese network for electricity theft detection in smart grids. J. Parallel Distrib. Comput, 0743–7315 (2021)
Google Scholar