McDaniel, P., McLaughlin, S.: Security and privacy challenges in the smart grid. IEEE Secur. Priv. 7(3), 75–77 (2009)
CrossRef
Google Scholar
Chen, Q., Zheng, K., Kang, C., Huangfu, F.: Detection methods of abnormal electricity consumption behaviors: review and prospect. Autom. Electr. Power Syst. 42(17), 189–199 (2018)
Google Scholar
Lo, C.-H., Ansari, N.: Consumer: a novel hybrid intrusion detection system for distribution networks in smart grid. IEEE Trans. Emerg. Top. Comput. 1(1), 33–44 (2013)
CrossRef
Google Scholar
Amin, S., Schwartz, G.A., Tembine, H.: Incentives and security in electricity distribution networks. In: International Conference on Decision and Game Theory for Security, pp. 264–280. Springer (2012)
Google Scholar
Zheng, Z., Yang, Y., Niu, X., Dai, H.-N., Zhou, Y.: Wide and deep convolutional neural networks for electricity-theft detection to secure smart grids. IEEE Trans. Industr. Inf. 14(4), 1606–1615 (2017)
CrossRef
Google Scholar
Buzau, M.M., Tejedor-Aguilera, J., Cruz-Romero, P., Gómez-Expósito, A.: Detection of non-technical losses using smart meter data and supervised learning. IEEE Trans. Smart Grid 10(3), 2661–2670 (2018)
CrossRef
Google Scholar
Kong, X., Zhao, X., Liu, C., Li, Q., Dong, D., Li, Y.: Electricity theft detection in low-voltage stations based on similarity measure and DT-KSVM. Int. J. Electr. Power Energy Syst. 125, 106544 (2021)
CrossRef
Google Scholar
Buzau, M.-M., Tejedor-Aguilera, J., Cruz-Romero, P., Gómez-Expósito, A.: Hybrid deep neural networks for detection of non-technical losses in electricity smart meters. IEEE Trans. Power Syst. 35(2), 1254–1263 (2019)
CrossRef
Google Scholar
Razavi, R., Gharipour, A., Fleury, M., Akpan, I.J.: A practical feature-engineering framework for electricity theft detection in smart grids. Appl. Energy 238, 481–494 (2019)
CrossRef
Google Scholar
Yao, D., Wen, M., Liang, X., Zipeng, F., Zhang, K., Yang, B.: Energy theft detection with energy privacy preservation in the smart grid. IEEE Internet Things J. 6(5), 7659–7669 (2019)
CrossRef
Google Scholar
Punmiya, R., Choe, S.: Energy theft detection using gradient boosting theft detector with feature engineering-based preprocessing. IEEE Trans. Smart Grid 10(2), 2326–2329 (2019)
CrossRef
Google Scholar
Huang, Y., Qifeng, X.: Electricity theft detection based on stacked sparse denoising autoencoder. Int. J. Electr. Power Energy Syst. 125, 106448 (2021)
CrossRef
Google Scholar
Arif, A., Javaid, N., Aldegheishem, A., Alrajeh, N.: Big data analytics for identifying electricity theft using machine learning approaches in micro grids for smart communities
Google Scholar
Aldegheishem, A., Anwar, M., Javaid, N., Alrajeh, N., Shafiq, M., Ahmed, H.: Towards sustainable energy efficiency with intelligent electricity theft detection in smart grids emphasising enhanced neural networks. IEEE Access 9, 25036–25061 (2021)
CrossRef
Google Scholar
Xiaoquan, L., Zhou, Yu., Wang, Z., Yi, Y., Feng, L., Wang, F.: Knowledge embedded semi-supervised deep learning for detecting non-technical losses in the smart grid. Energies 12(18), 3452 (2019)
CrossRef
Google Scholar
Ramos, C.C.O., Rodrigues, D., de Souza, A.N., Papa, J.P.: On the study of commercial losses in Brazil: a binary black hole algorithm for theft characterization. IEEE Trans. Smart Grid 9(2), 676–683 (2016)
CrossRef
Google Scholar
Kocaman, B., Tümen, V.: Detection of electricity theft using data processing and LSTM method in distribution systems. Sādhanā 45(1), 1–10 (2020)
CrossRef
Google Scholar
Hu, T., Guo, Q., Sun, H., Huang, T.-E., Lan, J.: Nontechnical losses detection through coordinated BiWGAN and SVDD. IEEE Trans. Neural Netw. Learn. Syst. 32, 1866–1880 (2020)
CrossRef
Google Scholar
Saeed, M.S., Mustafa, M.W., Sheikh, U.U., Jumani, T.A., Mirjat, N.H.: Ensemble bagged tree based classification for reducing non-technical losses in Multan electric power company of Pakistan. Electronics 8(8), 860 (2019)
CrossRef
Google Scholar
Gong, X., Tang, B., Zhu, R., Liao, W., Song, L.: Data augmentation for electricity theft detection using conditional variational auto-encoder. Energies 13(17), 4291 (2020)
CrossRef
Google Scholar
Aslam, Z., Ahmed, F., Almogren, A., Shafiq, M., Zuair, M., Javaid, N.: An attention guided semi-supervised learning mechanism to detect electricity frauds in the distribution systems. IEEE Access 8, 221767–221782 (2020)
CrossRef
Google Scholar
Li, S., Han, Y., Xu, Y., Yingchen, S., Wang, J., Zhao, Q.: Electricity theft detection in power grids with deep learning and random forests. J. Electr. Comput. Eng. 2019 (2019)
Google Scholar
Avila, N.F., Figueroa, G., Chu, C.-C.: NTL detection in electric distribution systems using the maximal overlap discrete wavelet-packet transform and random undersampling boosting. IEEE Trans. Power Syst. 33(6), 7171–7180 (2018)
CrossRef
Google Scholar
Jokar, P., Arianpoo, N., Leung, V.C.M.: Electricity theft detection in AMI using customers consumption patterns. IEEE Trans. Smart Grid 7(1), 216–226 (2015)
CrossRef
Google Scholar
Zheng, K., Chen, Q., Wang, Y., Kang, C., Xia, Q.: A novel combined data-driven approach for electricity theft detection. IEEE Trans. Industr. Inf. 15(3), 1809–1819 (2018)
CrossRef
Google Scholar
Gunturi, S.K., Sarkar, D.: Ensemble machine learning models for the detection of energy theft. Electr. Power Syst. Res. 192, 106904 (2021)
CrossRef
Google Scholar
Hasan, Md., Toma, R.N., Nahid, A.-A., Islam, M.M., Kim, J.-M., et al.: Electricity theft detection in smart grid systems: a CNN-LSTM based approach. Energies 12(17), 3310 (2019)
CrossRef
Google Scholar
Chandola, V., Banerjee, A., Kumar, V.: Anomaly detection: a survey. ACM Comput. Surv. (CSUR) 41(3), 1–58 (2009)
CrossRef
Google Scholar
Arjovsky, M., Chintala, S., Bottou, L.: Wasserstein generative adversarial networks. In: International Conference on Machine Learning, pp. 214–223. PMLR (2017)
Google Scholar
Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.: Improved training of Wasserstein GANs. arXiv preprint arXiv:1704.00028 (2017)
Zhao, J., Mao, X., Chen, L.: Speech emotion recognition using deep 1D & 2D CNN LSTM networks. Biomed. Signal Process. Control 47, 312–323 (2019)
CrossRef
Google Scholar
Cui, Z., Ke, R., Ziyuan, P., Wang, Y.: Stacked bidirectional and unidirectional LSTM recurrent neural network for forecasting network-wide traffic state with missing values. Transp. Res. Part C Emerg. Technol. 118, 102674 (2020)
CrossRef
Google Scholar