Skip to main content

Synthetic Theft Attacks Implementation for Data Balancing and a Gated Recurrent Unit Based Electricity Theft Detection in Smart Grids

Part of the Lecture Notes in Networks and Systems book series (LNNS,volume 278)

Abstract

In this paper, we present a novel approach for the electricity theft detection (ETD). It comprises of two modules: (1) implementations of the six theft attacks for dealing with the data imbalanced issue and (2) a gated recurrent unit (GRU) to tackle the model’s poor performance in terms of high false positive rate (FPR) due to some non malicious reasons (i.e., drift). In order to balance the data, the synthetic theft attacks are applied on the smart grid corporation of China (SGCC) dataset. Subsequently, once the data is balanced, we pass the data to the GRU for ETD. As the GRU model stores and memorizes a huge sequence of the data by utilizing the balanced data, so it helps to detect the real thieves instead of anomaly due to drift. The proposed methodology uses electricity consumption (EC) data from SGCC dataset for solving ETD problem. The performance of the adopted GRU with respects to ETD accuracy is compared with the existing support vector machine (SVM) using various performance metrics. Simulation results show that SVM achieves 64.33% accuracy; whereas, the adopted GRU achieves 82.65% accuracy for efficient ETD.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-79725-6_39
  • Chapter length: 11 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   269.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-79725-6
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   349.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

References

  1. Huang, Y., Qifeng, X.: Electricity theft detection based on stacked sparse denoising autoencoder. Int. J. Electr. Power Energy Syst. 125 (2021)

    Google Scholar 

  2. Zheng, Z., Yang, Y., Niu, X., Dai, H.-N., Zhou, Y.: Wide and deep convolutional neural networks for electricity-theft detection to secure smart grids. IEEE Trans. Industr. Inf. 14(4), 1606–1615 (2017)

    CrossRef  Google Scholar 

  3. Buzau, M.-M., Tejedor-Aguilera, J., Cruz-Romero, P., Gómez-Expósito, A.: Hybrid deep neural networks for detection of non-technical losses in electricity smart meters. IEEE Trans. Power Syst. 35(2), 1254–1263 (2019)

    CrossRef  Google Scholar 

  4. Khoo, B., Ye, C.: Using RFID for anti-theft in a Chinese electrical supply company: a cost-benefit analysis. In: 2011 Wireless Telecommunications Symposium (WTS), pp. 1–6. IEEE (2011)

    Google Scholar 

  5. McLaughlin, S., Holbert, B., Fawaz, A., Berthier, R., Zonouz, S.: A multi-sensor energy theft detection framework for advanced metering infrastructures. IEEE J. Sel. Areas Commun. 31(7), 1319–1330 (2013)

    CrossRef  Google Scholar 

  6. Cárdenas, A.A., Amin, S., Schwartz, G., Dong, R., Sastry, S.: A game theory model for electricity theft detection and privacy-aware control in AMI systems. In: 2012 50th Annual Allerton Conference on Communication, Control, and Computing (Allerton), pp. 1830–1837. IEEE (2012)

    Google Scholar 

  7. Amin, S., Schwartz, G.A., Tembine, H.: Incentives and security in electricity distribution networks. In: Grossklags, J., Walrand, J. (eds.) International Conference on Decision and Game Theory for Security, pp. 264–280. Springer, Heidelberg (2012)

    Google Scholar 

  8. Jokar, P., Nasim, A., Leung, V.C.M.: Electricity theft detection in AMI using customers’ consumption patterns. IEEE Trans. Smart Grid 7(1), 216–226 (2015)

    Google Scholar 

  9. Gunturi, S.K., Sarkar, D.: Ensemble machine learning models for the detection of energy theft. Electric Power Syst. Res. 192, 106904 (2021)

    Google Scholar 

  10. Kong, X., Zhao, X., Liu, C., Li, Q., Dong, D.L., Li, Y.: Electricity theft detection in low-voltage stations based on similarity measure and DT-KSVM. Int. J. Electr. Power Energy Syst. 125 (2021)

    Google Scholar 

  11. Buzau, M.M., Javier, T.-A., Pedro, C.-R., Antonio, G.-E.: Detection of non-technical losses using smart meter data and supervised learning. IEEE Trans. Smart Grid 10(3), 2661–2670 (2018)

    Google Scholar 

  12. Qu, Z., Li, H., Wang, Y., Zhang, J., Abu-Siada, A., Yao, Y.: Detection of electricity theft behavior based on improved synthetic minority oversampling technique and random forest classifier. Energies 13(8), 2039 (2020)

    CrossRef  Google Scholar 

  13. Lu, X., Zhou, Yu., Wang, Z., Yi, Y., Feng, L., Wang, F.: Knowledge embedded semi-supervised deep learning for detecting non-technical losses in the smart grid. Energies 12(18), 3452 (2019)

    CrossRef  Google Scholar 

  14. Avila, N.F., Gerardo, F., Chu, C.-C.: NTL detection in electric distribution systems using the maximal overlap discrete wavelet-packet transform and random undersampling boosting. IEEE Trans. Power Syst. 33(6), 7171–7180 (2018)

    Google Scholar 

  15. Hasan, M., Toma, R.N., Nahid, A.-A., Islam, M.M., Kim, J.-M.: Electricity theft detection in smart grid systems: a CNN-LSTM based approach. Energies 12(17), 3310 (2019)

    Google Scholar 

  16. Saeed, M.S., Mustafa, M.W., Sheikh, U.U., Jumani, T.A., Mirjat, N.H.: Ensemble bagged tree based classification for reducing non-technical losses in multan electric power company of Pakistan. Electronics 8(8), 860 (2019)

    Google Scholar 

  17. Wang, X., Yang, I., Ahn, S.-H.: Sample efficient home power anomaly detection in real time using semi-supervised learning. IEEE Access 7, 139712–139725 (2019)

    CrossRef  Google Scholar 

  18. Liu, H., Li, Z., Li, Y.: Noise reduction power stealing detection model based on self-balanced data set. Energies 13(7), 1763 (2020)

    CrossRef  Google Scholar 

  19. Ibrahem, M.I., Nabil, M., Fouda, M.M., Mahmoud, M.M., Alasmary, W., Alsolami, F.: Efficient privacy-preserving electricity theft detection with dynamic billing and load monitoring for AMI networks. IEEE Internet of Things J. 8(2), 1243–1258 (2020)

    Google Scholar 

  20. Yao, D., Wen, M., Liang, X., Zipeng, F., Zhang, K., Yang, B.: Energy theft detection with energy privacy preservation in the smart grid. IEEE Internet Things J. 6(5), 7659–7669 (2019)

    CrossRef  Google Scholar 

  21. Nabil, M., Ismail, M., Mahmoud, M.M., Alasmary, W., Serpedin, E.: PPETD: privacy-preserving electricity theft detection scheme with load monitoring and billing for AMI networks. IEEE Access 7, 96334–96348 (2019)

    Google Scholar 

  22. Micheli, G., Soda, E., Vespucci, M.T., Gobbi, M., Bertani, A.: Big data analytics: an aid to detection of non-technical losses in power utilities. Comput. Manag. Sci. 16(1), 329–343 (2019)

    Google Scholar 

  23. Punmiya, R., Choe, S.: Energy theft detection using gradient boosting theft detector with feature engineering-based preprocessing. IEEE Trans. Smart Grid 10(2), 2326–2329 (2019)

    CrossRef  Google Scholar 

  24. Ghasemi, A.A., Gitizadeh, M.: Detection of illegal consumers using pattern classification approach combined with Levenberg-Marquardt method in smart grid. Int. J. Electr. Power Energy Syst. 99, 363–375 (2018)

    Google Scholar 

  25. Fenza, G., Gallo, M., Loia, V.: Drift-aware methodology for anomaly detection in smart grid. IEEE Access 7, 9645–9657 (2019)

    CrossRef  Google Scholar 

  26. Yan, Z., Wen, H.: Electricity theft detection base on extreme gradient boosting in AMI. IEEE Trans. Instrum. Meas. 70, 1–9 (2021)

    Google Scholar 

  27. Li, S., Han, Y., Yao, X., Yingchen, S., Wang, J., Zhao, Q.: Electricity theft detection in power grids with deep learning and random forests. J. Electr. Comput. Eng. 2019 (2019)

    Google Scholar 

  28. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)

    CrossRef  Google Scholar 

  29. Chung, J., Gulcehre, C., Cho, K., Bengio, Y.: Empirical evaluation of gated recurrent neural networks on sequence modeling. arXiv preprint arXiv:1412.3555 (2014). www.arxiv.org. Accessed 17 April 2021

  30. Adil, M., Javaid, N., Qasim, U., Ullah, I., Shafiq, M., Choi, J.-G.: LSTM and bat-based RUSBoost approach for electricity theft detection. Appl. Sci. 10(12), 4378 (2020)

    CrossRef  Google Scholar 

  31. www.machinelearningmastery.com. Accessed 17 Apr 2021

  32. Gul, H., Javaid, N., Ullah, I., Qamar, A.M., Afzal, M.K., Joshi, G.P.: Detection of non-technical losses using SOSTLink and bidirectional gated recurrent unit to secure smart meters. Appl. Sci. 10(9), 3151 (2020)

    Google Scholar 

  33. Aldegheishem, A., Anwar, M., Javaid, N., Alrajeh, N., Shafiq, M., Ahmed, H.: Towards sustainable energy efficiency with intelligent electricity theft detection in smart grids emphasising enhanced neural networks. IEEE Access 9, 25036–25061 (2021)

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Pamir, Ullah, A., Munawar, S., Asif, M., Kabir, B., Javaid, N. (2021). Synthetic Theft Attacks Implementation for Data Balancing and a Gated Recurrent Unit Based Electricity Theft Detection in Smart Grids. In: Barolli, L., Yim, K., Enokido, T. (eds) Complex, Intelligent and Software Intensive Systems. CISIS 2021. Lecture Notes in Networks and Systems, vol 278. Springer, Cham. https://doi.org/10.1007/978-3-030-79725-6_39

Download citation