Huang, Y., Qifeng, X.: Electricity theft detection based on stacked sparse denoising autoencoder. Int. J. Electr. Power Energy Syst. 125 (2021)
Google Scholar
Zheng, Z., Yang, Y., Niu, X., Dai, H.-N., Zhou, Y.: Wide and deep convolutional neural networks for electricity-theft detection to secure smart grids. IEEE Trans. Industr. Inf. 14(4), 1606–1615 (2017)
CrossRef
Google Scholar
Buzau, M.-M., Tejedor-Aguilera, J., Cruz-Romero, P., Gómez-Expósito, A.: Hybrid deep neural networks for detection of non-technical losses in electricity smart meters. IEEE Trans. Power Syst. 35(2), 1254–1263 (2019)
CrossRef
Google Scholar
Khoo, B., Ye, C.: Using RFID for anti-theft in a Chinese electrical supply company: a cost-benefit analysis. In: 2011 Wireless Telecommunications Symposium (WTS), pp. 1–6. IEEE (2011)
Google Scholar
McLaughlin, S., Holbert, B., Fawaz, A., Berthier, R., Zonouz, S.: A multi-sensor energy theft detection framework for advanced metering infrastructures. IEEE J. Sel. Areas Commun. 31(7), 1319–1330 (2013)
CrossRef
Google Scholar
Cárdenas, A.A., Amin, S., Schwartz, G., Dong, R., Sastry, S.: A game theory model for electricity theft detection and privacy-aware control in AMI systems. In: 2012 50th Annual Allerton Conference on Communication, Control, and Computing (Allerton), pp. 1830–1837. IEEE (2012)
Google Scholar
Amin, S., Schwartz, G.A., Tembine, H.: Incentives and security in electricity distribution networks. In: Grossklags, J., Walrand, J. (eds.) International Conference on Decision and Game Theory for Security, pp. 264–280. Springer, Heidelberg (2012)
Google Scholar
Jokar, P., Nasim, A., Leung, V.C.M.: Electricity theft detection in AMI using customers’ consumption patterns. IEEE Trans. Smart Grid 7(1), 216–226 (2015)
Google Scholar
Gunturi, S.K., Sarkar, D.: Ensemble machine learning models for the detection of energy theft. Electric Power Syst. Res. 192, 106904 (2021)
Google Scholar
Kong, X., Zhao, X., Liu, C., Li, Q., Dong, D.L., Li, Y.: Electricity theft detection in low-voltage stations based on similarity measure and DT-KSVM. Int. J. Electr. Power Energy Syst. 125 (2021)
Google Scholar
Buzau, M.M., Javier, T.-A., Pedro, C.-R., Antonio, G.-E.: Detection of non-technical losses using smart meter data and supervised learning. IEEE Trans. Smart Grid 10(3), 2661–2670 (2018)
Google Scholar
Qu, Z., Li, H., Wang, Y., Zhang, J., Abu-Siada, A., Yao, Y.: Detection of electricity theft behavior based on improved synthetic minority oversampling technique and random forest classifier. Energies 13(8), 2039 (2020)
CrossRef
Google Scholar
Lu, X., Zhou, Yu., Wang, Z., Yi, Y., Feng, L., Wang, F.: Knowledge embedded semi-supervised deep learning for detecting non-technical losses in the smart grid. Energies 12(18), 3452 (2019)
CrossRef
Google Scholar
Avila, N.F., Gerardo, F., Chu, C.-C.: NTL detection in electric distribution systems using the maximal overlap discrete wavelet-packet transform and random undersampling boosting. IEEE Trans. Power Syst. 33(6), 7171–7180 (2018)
Google Scholar
Hasan, M., Toma, R.N., Nahid, A.-A., Islam, M.M., Kim, J.-M.: Electricity theft detection in smart grid systems: a CNN-LSTM based approach. Energies 12(17), 3310 (2019)
Google Scholar
Saeed, M.S., Mustafa, M.W., Sheikh, U.U., Jumani, T.A., Mirjat, N.H.: Ensemble bagged tree based classification for reducing non-technical losses in multan electric power company of Pakistan. Electronics 8(8), 860 (2019)
Google Scholar
Wang, X., Yang, I., Ahn, S.-H.: Sample efficient home power anomaly detection in real time using semi-supervised learning. IEEE Access 7, 139712–139725 (2019)
CrossRef
Google Scholar
Liu, H., Li, Z., Li, Y.: Noise reduction power stealing detection model based on self-balanced data set. Energies 13(7), 1763 (2020)
CrossRef
Google Scholar
Ibrahem, M.I., Nabil, M., Fouda, M.M., Mahmoud, M.M., Alasmary, W., Alsolami, F.: Efficient privacy-preserving electricity theft detection with dynamic billing and load monitoring for AMI networks. IEEE Internet of Things J. 8(2), 1243–1258 (2020)
Google Scholar
Yao, D., Wen, M., Liang, X., Zipeng, F., Zhang, K., Yang, B.: Energy theft detection with energy privacy preservation in the smart grid. IEEE Internet Things J. 6(5), 7659–7669 (2019)
CrossRef
Google Scholar
Nabil, M., Ismail, M., Mahmoud, M.M., Alasmary, W., Serpedin, E.: PPETD: privacy-preserving electricity theft detection scheme with load monitoring and billing for AMI networks. IEEE Access 7, 96334–96348 (2019)
Google Scholar
Micheli, G., Soda, E., Vespucci, M.T., Gobbi, M., Bertani, A.: Big data analytics: an aid to detection of non-technical losses in power utilities. Comput. Manag. Sci. 16(1), 329–343 (2019)
Google Scholar
Punmiya, R., Choe, S.: Energy theft detection using gradient boosting theft detector with feature engineering-based preprocessing. IEEE Trans. Smart Grid 10(2), 2326–2329 (2019)
CrossRef
Google Scholar
Ghasemi, A.A., Gitizadeh, M.: Detection of illegal consumers using pattern classification approach combined with Levenberg-Marquardt method in smart grid. Int. J. Electr. Power Energy Syst. 99, 363–375 (2018)
Google Scholar
Fenza, G., Gallo, M., Loia, V.: Drift-aware methodology for anomaly detection in smart grid. IEEE Access 7, 9645–9657 (2019)
CrossRef
Google Scholar
Yan, Z., Wen, H.: Electricity theft detection base on extreme gradient boosting in AMI. IEEE Trans. Instrum. Meas. 70, 1–9 (2021)
Google Scholar
Li, S., Han, Y., Yao, X., Yingchen, S., Wang, J., Zhao, Q.: Electricity theft detection in power grids with deep learning and random forests. J. Electr. Comput. Eng. 2019 (2019)
Google Scholar
Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)
CrossRef
Google Scholar
Chung, J., Gulcehre, C., Cho, K., Bengio, Y.: Empirical evaluation of gated recurrent neural networks on sequence modeling. arXiv preprint arXiv:1412.3555 (2014). www.arxiv.org. Accessed 17 April 2021
Adil, M., Javaid, N., Qasim, U., Ullah, I., Shafiq, M., Choi, J.-G.: LSTM and bat-based RUSBoost approach for electricity theft detection. Appl. Sci. 10(12), 4378 (2020)
CrossRef
Google Scholar
www.machinelearningmastery.com. Accessed 17 Apr 2021
Gul, H., Javaid, N., Ullah, I., Qamar, A.M., Afzal, M.K., Joshi, G.P.: Detection of non-technical losses using SOSTLink and bidirectional gated recurrent unit to secure smart meters. Appl. Sci. 10(9), 3151 (2020)
Google Scholar
Aldegheishem, A., Anwar, M., Javaid, N., Alrajeh, N., Shafiq, M., Ahmed, H.: Towards sustainable energy efficiency with intelligent electricity theft detection in smart grids emphasising enhanced neural networks. IEEE Access 9, 25036–25061 (2021)
CrossRef
Google Scholar