Buzau, M.M., Tejedor-Aguilera, J., Cruz-Romero, P., Gómez-Expósito, A.: Detection of non-technical losses using smart meter data and supervised learning. IEEE Trans. Smart Grid 10(3), 2661–2670 (2018)
CrossRef
Google Scholar
Kong, X., Zhao, X., Liu, C., Li, Q., Dong, D., Li, Y.: Electricity theft detection in low-voltage stations based on similarity measure and DT-KSVM. Int. J. Electr. Power Energy Syst. 125 (2021). https://doi.org/10.1016/j.ijepes.2020.106544
Zheng, Z., Yang, Y., Niu, X., Dai, H.N., Zhou, Y.: Wide and deep convolutional neural networks for electricity-theft detection to secure smart grids. IEEE Trans. Industr. Inf. 14(4), 1606–1615 (2017)
CrossRef
Google Scholar
Buzau, M.M., Tejedor-Aguilera, J., Cruz-Romero, P., Gómez-Expósito, A.: Hybrid deep neural networks for detection of non-technical losses in electricity smart meters. IEEE Trans. Power Syst. 35(2), 1254–1263 (2019)
CrossRef
Google Scholar
Punmiya, R., Choe, S.: Energy theft detection using gradient boosting theft detector with feature engineering-based preprocessing. IEEE Trans. Smart Grid 10(2), 2326–2329 (2019)
CrossRef
Google Scholar
Yan, Z., Wen, H.: Electricity theft detection base on extreme gradient boosting in AMI. IEEE Trans. Instrum. Meas. 70, 1–9 (2021)
Google Scholar
Avila, N.F., Figueroa, G., Chu, C.C.: NTL detection in electric distribution systems using the maximal overlap discrete wavelet-packet transform and random undersampling boosting. IEEE Trans. Power Syst. 33(6), 7171–7180 (2018)
CrossRef
Google Scholar
Jokar, P., Arianpoo, N., Leung, V.C.: Electricity theft detection in AMI using customers’ consumption patterns. IEEE Trans. Smart Grid 7(1), 216–226 (2015)
CrossRef
Google Scholar
Li, S., Han, Y., Yao, X., Yingchen, S., Wang, J., Zhao, Q.: Electricity theft detection in power grids with deep learning and random forests. J. Electr. Comput. Eng. 2019 (2019). https://doi.org/10.1155/2019/4136874
Hasan, M., Toma, R.N., Nahid, A.A., Islam, M.M., Kim, J.M.: Electricity theft detection in smart grid systems: a CNN-LSTM based approach. Energies 12(17), 3310 (2019). https://doi.org/10.3390/en12173310
CrossRef
Google Scholar
Fenza, G., Gallo, M., Loia, V.: Drift-aware methodology for anomaly detection in smart grid. IEEE Access 7, 9645–9657 (2019)
CrossRef
Google Scholar
Zheng, K., Chen, Q., Wang, Y., Kang, C., Xia, Q.: A novel combined data-driven approach for electricity theft detection. IEEE Trans. Industr. Inf. 15(3), 1809–1819 (2018)
CrossRef
Google Scholar
Saeed, M.S., Mustafa, M.W., Sheikh, U.U., Jumani, T.A., Mirjat, N.H.: Ensemble bagged tree based classification for reducing non-technical losses in multan electric power company of Pakistan. Electronics 8(8), 860 (2019). https://doi.org/10.3390/electronics8080860
CrossRef
Google Scholar
Li, W., Logenthiran, T., Phan, V.T., Woo, W.L.: A novel smart energy theft system (SETS) for IoT-based smart home. IEEE Internet Things J. 6(3), 5531–5539 (2019)
CrossRef
Google Scholar
Feng, X., et al.: A novel electricity theft detection scheme based on text convolutional neural networks. Energies 13(21), 5758 (2020). https://doi.org/10.3390/en13215758
CrossRef
Google Scholar
Qu, Z., Li, H., Wang, Y., Zhang, J., Abu-Siada, A., Yao, Y.: Detection of electricity theft behavior based on improved synthetic minority oversampling technique and random forest classifier. Energies 13(8), 2039 (2020). https://doi.org/10.3390/en13082039
CrossRef
Google Scholar
Gunturi, S.K., Sarkar, D.: Ensemble machine learning models for the detection of energy theft. Electric Power Syst. Res. 106904 (2020). https://doi.org/10.1016/j.epsr.2020.106904
Huang, Y., Xu, Q.: Electricity theft detection based on stacked sparse denoising autoencoder. Int. J. Electr. Power Energy Syst. 125 (2021). https://doi.org/10.1016/j.ijepes.2020.106448
Gong, X., Tang, B., Zhu, R., Liao, W., Song, L.: Data augmentation for electricity theft detection using conditional variational auto-encoder. Energies 13(17), 4291 (2020). https://doi.org/10.3390/en13174291
CrossRef
Google Scholar
Park, C.H., Kim, T.: Energy theft detection in advanced metering infrastructure based on anomaly pattern detection. Energies 13(15), 3832 (2020). https://doi.org/10.3390/en13153832
CrossRef
Google Scholar
Adil, M., Javaid, N., Qasim, U., Ullah, I., Shafiq, M., Choi, J.G.: LSTM and bat-based RUSBoost approach for electricity theft detection. Appl. Sci. 10(12), 4378 (2020). https://doi.org/10.3390/app10124378
CrossRef
Google Scholar
Maamar, A., Benahmed, K.: A hybrid model for anomalies detection in AMI system combining K-means clustering and deep neural network. Comput. Mater. Continua 60(1), 15–39 (2019)
CrossRef
Google Scholar
Ding, N., Ma, H., Gao, H., Ma, Y., Tan, G.: Real-time anomaly detection based on long short-Term memory and Gaussian Mixture Model. Comput. Electr. Eng. 79 (2019)
Google Scholar
Jindal, A., Dua, A., Kaur, K., Singh, M., Kumar, N., Mishra, S.: Decision tree and SVM-based data analytics for theft detection in smart grid. IEEE Trans. Industr. Inf. 12(3), 1005–1016 (2016)
CrossRef
Google Scholar
Lu, X., Zhou, Y., Wang, Z., Yi, Y., Feng, L., Wang, F.: Knowledge embedded semi-supervised deep learning for detecting non-technical losses in the smart grid. Energies 12(18), 3452 (2019). https://doi.org/10.3390/en12183452
CrossRef
Google Scholar
Arif, A., Javaid, N., Aldegheishem, A., Alrajeh, N.: Big Data Analytics for Identifying Electricity Theft using Machine Learning Approaches in Micro Grids for Smart Communities
Google Scholar
Ghori, K.M., Imran, M., Nawaz, A., Abbasi, R.A., Ullah, A., Szathmary, L.: Performance analysis of machine learning classifiers for non-technical loss detection. J. Ambient Intell. Hum. Comput. 1–16 (2020)
Google Scholar
Aslam, Z., Ahmed, F., Almogren, A., Shafiq, M., Zuair, M., Javaid, N.: An attention guided semi-supervised learning mechanism to detect electricity frauds in the distribution systems. IEEE Access 8, 221767–221782 (2020)
CrossRef
Google Scholar
Aldegheishem, A., Anwar, M., Javaid, N., Alrajeh, N., Shafiq, M., Ahmed, H.: Towards sustainable energy efficiency with intelligent electricity theft detection in smart grids emphasising enhanced neural networks. IEEE Access 9, 25036–25061 (2021)
CrossRef
Google Scholar