Skip to main content

Electricity Theft Detection in Smart Meters Using a Hybrid Bi-directional GRU Bi-directional LSTM Model

  • 651 Accesses

Part of the Lecture Notes in Networks and Systems book series (LNNS,volume 278)

Abstract

In this paper, a problem of misclassification due to cross pairs across a decision boundary is investigated. A cross pair is a junction of the two opposite class samples. These cross pairs are identified using Tomek links technique. The majority class sample associated with cross pairs are removed to segregate the two opposite classes through an affine decision boundary. Due to non-availability of theft data, six theft cases are used to synthesize theft data to mimic real world scenario. These six theft cases are applied to benign class data, where benign samples are modified and malicious samples are synthesized. Furthermore, to tackle the class imbalance issue a K-means SMOTE is used for the provision of balance data. Moreover, the technical route is to train the model on a time-series data of both classes. Training model on imbalance data tends to misclassification of the samples, due to biasness towards a majority class, which results in a high FPR. The balanced data is provided as an input to a hybrid bi-directional GRU and bi-directional LSTM model. The two classes are efficiently classified with a high accuracy, high detection rate and low FPR.

Keywords

  • Smart meters
  • BiGRU
  • BiLSTM
  • Tomek links
  • Theft cases
  • FPR

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-79725-6_29
  • Chapter length: 12 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   269.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-79725-6
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   349.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.
Fig. 3.

References

  1. Grigsby, L.L. (ed.): Electric Power Generation, Transmission, and Distribution. CRC Press, Boca Raton (2018)

    Google Scholar 

  2. Yu, X., Cecati, C., Dillon, T., Simoes, M.G.: The new frontier of smart grids. IEEE Ind. Electron. Mag. 5(3), 49–63 (2011)

    CrossRef  Google Scholar 

  3. Depuru, S.S.S.R., Wang, L., Devabhaktuni, V.: Electricity theft: overview, issues, prevention and a smart meter based approach to control theft. Energy Policy 39(2), 1007–1015 (2011)

    CrossRef  Google Scholar 

  4. Buzau, M., Tejedor-Aguilera, J., Cruz-Romero, P., Gómez-Expósito, A.: Hybrid deep neural networks for detection of non-technical losses in electricity smart meters. IEEE Trans. Power Syst. 35(2), 1254–1263 (2020). https://doi.org/10.1109/TPWRS.2019.2943115

    CrossRef  Google Scholar 

  5. World Bank: World development report 2004: making services work for poor people. The World Bank (2003)

    Google Scholar 

  6. Gaur, V., Gupta, E.: The determinants of electricity theft: an empirical analysis of Indian states. Energy Policy 93, 127–136 (2016)

    CrossRef  Google Scholar 

  7. Bhatti, S.S., et al.: Electric power transmission and distribution losses overview and minimization in Pakistan. Int. J. Sci. Eng. Res. 6(4), 1108–1112 (2015)

    Google Scholar 

  8. Buzau, M.M., Tejedor-Aguilera, J., Cruz-Romero, P., Gómez-Expósito, A.: Hybrid deep neural networks for detection of non-technical losses in electricity smart meters. IEEE Trans. Power Syst. 35(2), 1254–1263 (2019)

    CrossRef  Google Scholar 

  9. Smart Meters help reduce electricity theft increase safety. BC Hydro, Inc., vancouvers (2011)

    Google Scholar 

  10. Saeed, M.S., Mustafa, M.W., Sheikh, U.U., Jumani, T.A., Mirjat, N.H.: Ensemble bagged tree based classification for reducing non-technical losses in multan electric power company of Pakistan. Electronics 8(8), 860 (2019)

    CrossRef  Google Scholar 

  11. Punmiya, R., Choe, S.: Energy theft detection using gradient boosting theft detector with feature engineering-based preprocessing. IEEE Trans. Smart Grid 10(2), 2326–2329 (2019). https://doi.org/10.1109/TSG.2019.2892595

    CrossRef  Google Scholar 

  12. Buzau, M.M., Tejedor-Aguilera, J., Cruz-Romero, P., Gómez-Expósito, A.: Detection of non-technical losses using smart meter data and supervised learning. IEEE Trans. Smart Grid 10(3), 2661–2670 (2018)

    CrossRef  Google Scholar 

  13. Biswas, P.P., Cai, H., Zhou, B., Chen, B., Mashima, D., Zheng, V.W.: Electricity theft pinpointing through correlation analysis of master and individual meter readings. IEEE Trans. Smart Grid 11(4), 3031–3042 (2019)

    CrossRef  Google Scholar 

  14. Li, S., Han, Y., Yao, X., Yingchen, S., Wang, J., Zhao, Q.: Electricity theft detection in power grids with deep learning and random forests. J. Electr. Comput. Eng. (2019)

    Google Scholar 

  15. Hasan, M., Toma, R.N., Nahid, A.A., Islam, M.M., Kim, J.M.: Electricity theft detection in smart grid systems: a CNN-LSTM based approach. Energies 12(17), 3310 (2019)

    CrossRef  Google Scholar 

  16. Lu, X., Zhou, Y., Wang, Z., Yi, Y., Feng, L., Wang, F.: Knowledge embedded semi-supervised deep learning for detecting non-technical losses in the smart grid. Energies 12(18), 3452 (2019)

    CrossRef  Google Scholar 

  17. Zheng, Z., Yang, Y., Niu, X., Dai, H., Zhou, Y.: Wide and deep convolutional neural networks for electricity-theft detection to secure smart grids. IEEE Trans. Industr. Inf. 14(4), 1606–1615 (2018). https://doi.org/10.1109/TII.2017.2785963

    CrossRef  Google Scholar 

  18. Yan, Z., Wen, H.: Electricity theft detection base on extreme gradient boosting in AMI. IEEE Trans. Instrum. Meas. 70, 1–9 (2021)

    Google Scholar 

  19. Buzau, M.M., Tejedor-Aguilera, J., Cruz-Romero, P., Gómez-Expósito, A.: Detection of non-technical losses using smart meter data and supervised learning. IEEE Trans. Smart Grid 10(3), 2661–2670 (2019). https://doi.org/10.1109/TSG.2018.2807925

    CrossRef  Google Scholar 

  20. Ismail, M., Shaaban, M.F., Naidu, M., Serpedin, E.: Deep learning detection of electricity theft cyber-attacks in renewable distributed generation. IEEE Trans. Smart Grid 11(4), 3428–3437 (2020)

    CrossRef  Google Scholar 

  21. Jokar, P., Arianpoo, N., Leung, V.C.M.: Electricity theft detection in AMI using customers’ consumption patterns. IEEE Trans. Smart Grid 7(1), 216–226 (2016). https://doi.org/10.1109/TSG.2015.2425222

    CrossRef  Google Scholar 

  22. Liu, Y., Liu, T., Sun, H., Zhang, K., Liu, P.: Hidden electricity theft by exploiting multiple-pricing scheme in smart grids. IEEE Trans. Inf. Forensics Secur. 15, 2453–2468 (2020)

    CrossRef  Google Scholar 

  23. Zheng, K., Chen, Q., Wang, Y., Kang, C., Xia, Q.: A novel combined data-driven approach for electricity theft detection. IEEE Trans. Ind. Inf. 15(3), 1809–1819 (2018)

    CrossRef  Google Scholar 

  24. Kong, X., Zhao, X., Liu, C., Li, Q., Dong, D., Li, Y.: Electricity theft detection in low-voltage stations based on similarity measure and DT-KSVM. Int. J. Electr. Power Energy Syst. 125, 106544 (2021)

    CrossRef  Google Scholar 

  25. Fenza, G., Gallo, M., Loia, V.: Drift-aware methodology for anomaly detection in smart grid. IEEE Access 7, 9645–9657 (2019)

    CrossRef  Google Scholar 

  26. Huang, Y., Xu, Q.: Electricity theft detection based on stacked sparse denoising autoencoder. Int. J. Electr. Power Energy Syst. 125, 106448 (2021)

    CrossRef  Google Scholar 

  27. Yip, S.C., Wong, K., Hew, W.P., Gan, M.T., Phan, R.C.W., Tan, S.W.: Detection of energy theft and defective smart meters in smart grids using linear regression. Int. J. Electr. Power Energy Syst. 91, 230–240 (2017)

    CrossRef  Google Scholar 

  28. Park, C.H., Kim, T.: Energy theft detection in advanced metering infrastructure based on anomaly pattern detection. Energies 13(15), 3832 (2020)

    CrossRef  Google Scholar 

  29. Hu, J., Li, S., Hu, J., Guanci, Y.: A hierarchical feature extraction model for multi-label mechanical patent classification. Sustainability 10, 219 (2018). https://doi.org/10.3390/su10010219

    CrossRef  Google Scholar 

  30. Hasan, M., Toma, R.N., Nahid, A.A., Islam, M.M., Kim, J.M.: Electricity theft detection in smart grid systems: a CNN-LSTM based approach. Energies 12(17), 3310 (2019)

    CrossRef  Google Scholar 

  31. Khalid, R., Javaid, N., Al-Zahrani, F.A., Aurangzeb, K., Qazi, E.U.H., Ashfaq, T.: Electricity load and price forecasting using Jaya-Long Short Term Memory (JLSTM) in smart grids. Entropy 22(1), 10 (2020)

    CrossRef  Google Scholar 

  32. Mujeeb, S., Javaid, N., Akbar, M., Khalid, R., Nazeer, O., Khan, M.: Big data analytics for price and load forecasting in smart grids. In: International Conference on Broadband and Wireless Computing, Communication and Applications, pp. 77–87. Springer, Cham (2018)

    Google Scholar 

  33. Adil, M., Javaid, N., Qasim, U., Ullah, I., Shafiq, M., Choi, J.G.: LSTM and bat-based RUSBoost approach for electricity theft detection. Appl. Sci. 10(12), 4378 (2020)

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Munawar, S., Asif, M., Kabir, B., Pamir, Ullah, A., Javaid, N. (2021). Electricity Theft Detection in Smart Meters Using a Hybrid Bi-directional GRU Bi-directional LSTM Model. In: Barolli, L., Yim, K., Enokido, T. (eds) Complex, Intelligent and Software Intensive Systems. CISIS 2021. Lecture Notes in Networks and Systems, vol 278. Springer, Cham. https://doi.org/10.1007/978-3-030-79725-6_29

Download citation