Skip to main content

A Novel Approach to Network’s Topology Evolution and Robustness Optimization of Scale Free Networks

  • 627 Accesses

Part of the Lecture Notes in Networks and Systems book series (LNNS,volume 278)

Abstract

Internet of Things (IoT) is rapidly increasing day by day due to its involvement in many applications such as electric grids, biological networks, transport networks, etc. In complex network theory, the model based on Scale Free Networks (SFNs) is more suitable for IoT. The SFNs are robust against random attacks; however, vulnerable to malicious attacks. Furthermore, as the size of a network increases, its robustness decreases. Therefore, in this paper, we propose a novel topology evolution approach to enhance the robustness of SFNs. Initially, we divide the network area into upper and lower parts. The nodes are deployed equally in both parts and connected via one-to-many correspondence. The distribution is made because small sized networks are more robust against malicious attacks. Moreover, we use k-core decomposition to calculate the hierarchical changes in the nodes’ degree. In addition, the core-based and degree-based attacks are performed to analyze the robustness of SFNs. For the network optimization, we compare the Genetic Algorithm (GA) with Artificial Bee Colony (ABC) and Bacterial Foraging Algorithm (BFA). In the optimization process, the node’s distance based edge swap is performed to draw long links in the network because these links make the network more robust.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-79725-6_21
  • Chapter length: 11 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   269.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-79725-6
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   349.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

References

  1. Abdulwahid, A.H.: Power grid surveillance and control based on wireless sensor network technologies: review and future directions. In: Journal of Physics: Conference Series, vol. 1773, p. 012004. IOP Publishing (2021)

    Google Scholar 

  2. Al-Anbagi, I., Erol-Kantarci, M., Mouftah, H.T.: A delay mitigation scheme for WSN-based smart grid substation monitoring. In: 2013 9th International Wireless Communications and Mobile Computing Conference (IWCMC), pp. 1470–1475. IEEE (2013)

    Google Scholar 

  3. Dubey, J.R., Bhavsar, A.R.: WSN-based driver cabinet monitoring system for the fleet of long-route vehicles. In: Kotecha, K., Piuri, V., Shah, H.N., Patel, R. (eds.) Data Science and Intelligent Applications. LNDECT, vol. 52, pp. 499–508. Springer, Singapore (2021). https://doi.org/10.1007/978-981-15-4474-3_55

    CrossRef  Google Scholar 

  4. Djurišić, M.P., Tafa, Z., Dimić, G., Milutinović, V.: A survey of military applications of wireless sensor networks. In: 2012 Mediterranean Conference on Embedded Computing (MECO), pp. 196–199. IEEE (2012)

    Google Scholar 

  5. Ismail, M.N., Shukran, M.A., Isa, M.R.M., Adib, M., Zakaria, O.: Establishing a soldier wireless sensor network (WSN) communication for military operation monitoring. Int. J. Inform. Commun. Technol. 7(2), 89–95 (2018)

    Google Scholar 

  6. Zhang, Y., Sun, L., Song, H., Cao, X.: Ubiquitous WSN for healthcare: recent advances and future prospects. IEEE Internet Things J. 1(4), 311–318 (2014)

    CrossRef  Google Scholar 

  7. Fahmy, H.M.A.: WSN applications. Concepts, Applications, Experimentation and Analysis of Wireless Sensor Networks. SCT, pp. 67–232. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-58015-5_3

    CrossRef  Google Scholar 

  8. Ye, D., Gong, D., Wang, W.: Application of wireless sensor networks in environmental monitoring. In: 2009 2nd International Conference on Power Electronics And Intelligent Transportation System (PEITS), vol. 1, pp. 205–208. IEEE (2009)

    Google Scholar 

  9. De Masi, G.: The impact of topology on internet of things: a multidisciplinary review. In: 2018 Advances in Science and Engineering Technology International Conferences (ASET), pp. 1–6. IEEE (2018)

    Google Scholar 

  10. Watts, D.J., Strogatz, S.H.: Collective dynamics of ‘small-world’ networks. Nature 393(6684), 440–442 (1998)

    CrossRef  Google Scholar 

  11. Barabási, A.-L., Albert, R.: Emergence of scaling in random networks. Science 286(5439), 509–512 (1999)

    MathSciNet  CrossRef  Google Scholar 

  12. Sohn, I.: Small-world and scale-free network models for IoT systems. Mobile Inf. Syst. 2017 (2017)

    Google Scholar 

  13. Almogren, A., Khan, A.U., Almajed, H., Mohiuddin, I.: An adaptive enhanced differential evolution strategies for topology robustness in internet of things

    Google Scholar 

  14. Javaid, N.: Attack resistance based topology robustness of scale-free internet of things for smart cities talha naeem qureshi1, nadeem javaid, ahmad almogren, zain abubaker1, hisham almajed2, irfan mohiuddin2

    Google Scholar 

  15. Merris, R.: Laplacian matrices of graphs: a survey. Linear Algebra Appl. 197, 143–176 (1994)

    MathSciNet  CrossRef  Google Scholar 

  16. Harary, F.: Conditional connectivity. Networks 13(3), 347–357 (1983)

    MathSciNet  CrossRef  Google Scholar 

  17. Schneider, C.M., Moreira, A.A., Andrade, J.S., Havlin, S., Herrmann, H.J.: Mitigation of malicious attacks on networks. Proc. Natl. Acad. Sci. 108(10), 3838–3841 (2011)

    CrossRef  Google Scholar 

  18. Zhou, M., Liu, J.: A two-phase multiobjective evolutionary algorithm for enhancing the robustness of scale-free networks against multiple malicious attacks. IEEE Trans. Cybern. 47(2), 539–552 (2016)

    Google Scholar 

  19. Beygelzimer, A., Grinstein, G., Linsker, R., Rish, I.: Improving network robustness by edge modification. Phys. A 357(3–4), 593–612 (2005)

    CrossRef  Google Scholar 

  20. Jiang, Z.Y., Liang, M.G., Improving the network load balance by adding an edge. In: Advanced Materials Research, vol. 433, pp. 5147–5151. Trans Tech Publ (2012)

    Google Scholar 

  21. Herrmann, H.J., Schneider, C.M., Moreira, A.A., Andrade Jr., J.S., Havlin, S.: Onion-like network topology enhances robustness against malicious attacks. J. Stat. Mech.: Theory Exp. 2011(01), P01027 (2011)

    Google Scholar 

  22. Buesser, P., Daolio, F., Tomassini, M.: Optimizing the robustness of scale-free networks with simulated annealing. In: Dobnikar, A., Lotrič, U., Šter, B. (eds.) ICANNGA 2011. LNCS, vol. 6594, pp. 167–176. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20267-4_18

    CrossRef  Google Scholar 

  23. Qiu, T., Zhao, A., Xia, F., Si, W., Wu, D.O.: ROSE: robustness strategy for scale-free wireless sensor networks. IEEE/ACM Trans. Netw. 25(5), 2944–2959 (2017)

    CrossRef  Google Scholar 

  24. Rong, L., Liu, J.: A heuristic algorithm for enhancing the robustness of scale-free networks based on edge classification. Phys. A 503, 503–515 (2018)

    CrossRef  Google Scholar 

  25. Qiu, T., Liu, J., Si, W., Han, M., Ning, H., Atiquzzaman, M.: A data-driven robustness algorithm for the internet of things in smart cities. IEEE Commun. Mag. 55(12), 18–23 (2017)

    CrossRef  Google Scholar 

  26. Qiu, T., Liu, J., Si, W., Wu, D.O.: Robustness optimization scheme with multi-population co-evolution for scale-free wireless sensor networks. IEEE/ACM Trans. Netw. 27(3), 1028–1042 (2019)

    CrossRef  Google Scholar 

  27. Qiu, T., Lu, Z., Li, K., Xue, G., Wu, D.O.: An adaptive robustness evolution algorithm with self-competition for scale-free internet of things. In: IEEE INFOCOM 2020-IEEE Conference on Computer Communications, pp. 2106–2115. IEEE (2020)

    Google Scholar 

  28. Zhou, M., Liu, J.: A memetic algorithm for enhancing the robustness of scale-free networks against malicious attacks. Phys. A 410, 131–143 (2014)

    CrossRef  Google Scholar 

  29. Deng, Z., Xu, J., Song, Q., Hu, B., Wu, T., Huang, P.: Robustness of multi-agent formation based on natural connectivity. Appl. Math. Comput. 366, 124636 (2020)

    MATH  Google Scholar 

  30. Shihong, H., Li, G.: TMSE: a topology modification strategy to enhance the robustness of scale-free wireless sensor networks. Comput. Commun. 157, 53–63 (2020)

    CrossRef  Google Scholar 

  31. Lou, Y., Wang, L., Tsang, K.-F., Chen, G.: Towards optimal robustness of network controllability: An empirical necessary condition. IEEE Trans. Circuits Syst. I Regul. Pap. 67(9), 3163–3174 (2020)

    MathSciNet  CrossRef  Google Scholar 

  32. Chen, N., Qiu, T., Zhou, X., Li, K., Atiquzzaman, M.: An intelligent robust networking mechanism for the internet of things. IEEE Commun. Mag. 57(11), 91–95 (2019)

    CrossRef  Google Scholar 

  33. Cui, P., Zhu, P., Wang, K., Xun, P., Xia, Z.: Enhancing robustness of interdependent network by adding connectivity and dependence links. Phys. A 497, 185–197 (2018)

    MathSciNet  CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Usman, M., Javaid, N., Abbas, S.M., Javed, M.M., Waseem, M.A., Owais, M. (2021). A Novel Approach to Network’s Topology Evolution and Robustness Optimization of Scale Free Networks. In: Barolli, L., Yim, K., Enokido, T. (eds) Complex, Intelligent and Software Intensive Systems. CISIS 2021. Lecture Notes in Networks and Systems, vol 278. Springer, Cham. https://doi.org/10.1007/978-3-030-79725-6_21

Download citation