Skip to main content

Two-Agent Tree Evacuation

  • Conference paper
  • First Online:
Structural Information and Communication Complexity (SIROCCO 2021)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12810))

Abstract

We study the problem of evacuating two agents from a tree graph, through an unknown exit located at one of the nodes. Initially, the agents are located at the same starting node; they explore the graph until one of them finds the exit through which they can evacuate. The task is to minimize the time it takes until both agents evacuate, for a worst case placement of the exit. We consider two communication models, global communication where the agents can communicate at any time, and local communication where the agents can only communicate if they are at the same node at the same time. We show that the problem is NP-hard in both cases. We then present a 4/3-approximation algorithm for global and a 3/2-approximation algorithm for local communication.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The full version is available on our website: https://disco.ethz.ch/publications.

References

  1. Beck, A.: On the linear search problem. Israel J. Math. 2(4), 221–228 (1964). https://doi.org/10.1007/BF02759737

    Article  MathSciNet  MATH  Google Scholar 

  2. Karp, R.M.: Reducibility among combinatorial problems. In: Miller, R.E., Thatcher, J.W., Bohlinger, J.D. (eds.) Complexity of Computer Computations. IRSS, pp. 85–103. Springer, Boston (1972). https://doi.org/10.1007/978-1-4684-2001-2_9

    Chapter  Google Scholar 

  3. Gal, S.: Minimax solutions for linear search problems. SIAM J. Appl. Math. 27(1), 17–30 (1974)

    Article  MathSciNet  Google Scholar 

  4. Parsons, T.D.: Pursuit-evasion in a graph. In: Alavi, Y., Lick, D.R. (eds.) Theory and Applications of Graphs. LNM, vol. 642, pp. 426–441. Springer, Heidelberg (1978). https://doi.org/10.1007/BFb0070400

    Chapter  Google Scholar 

  5. Nowakowski, R., Winkler, P.: Vertex-to-vertex pursuit in a graph. Discrete Math. 43(2–3), 235–239 (1983)

    Article  MathSciNet  Google Scholar 

  6. Alpern, S.: The rendezvous search problem. SIAM J. Control. Optim. 33(3), 673–683 (1995)

    Article  MathSciNet  Google Scholar 

  7. Hejazi, R.F., Husain, T., Khan, F.I.: Landfarming operation of oily sludge in arid region–human health risk assessment. J. Hazard. Mater. 99(3), 287–302 (2003)

    Article  Google Scholar 

  8. López-Ortiz, A., Schuierer, S.: On-line parallel heuristics, processor scheduling and robot searching under the competitive framework. Theor. Comput. Sci. 310(1–3), 527–537 (2004)

    Article  MathSciNet  Google Scholar 

  9. Fraigniaud, P., Ilcinkas, D., Peer, G., Pelc, A., Peleg, D.: Graph exploration by a finite automaton. Theor. Comput. Sci. 345(2–3), 331–344 (2005)

    Article  MathSciNet  Google Scholar 

  10. Bektas, T.: The multiple traveling salesman problem: an overview of formulations and solution procedures. Omega 34(3), 209–219 (2006)

    Article  Google Scholar 

  11. Dessmark, A., Fraigniaud, P., Kowalski, D.R., Pelc, A.: Deterministic rendezvous in graphs. Algorithmica 46(1), 69–96 (2006). https://doi.org/10.1007/s00453-006-0074-2

    Article  MathSciNet  MATH  Google Scholar 

  12. Kranakis, E., Krizanc, D., Rajsbaum, S.: Mobile agent rendezvous: a survey. In: Flocchini, P., Gąsieniec, L. (eds.) SIROCCO 2006. LNCS, vol. 4056, pp. 1–9. Springer, Heidelberg (2006). https://doi.org/10.1007/11780823_1

    Chapter  Google Scholar 

  13. Czyzowicz, J., Gasieniec, L., Pelc, A.: Gathering few fat mobile robots in the plane. Theor. Comput. Sci. 410(6–7), 481–499 (2009)

    Article  MathSciNet  Google Scholar 

  14. Czyzowicz, J., Pelc, A., Roy, M.: Tree exploration by a swarm of mobile agents. In: Baldoni, R., Flocchini, P., Binoy, R. (eds.) OPODIS 2012. LNCS, vol. 7702, pp. 121–134. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-35476-2_9

    Chapter  Google Scholar 

  15. Feinerman, O., Korman, A.: Memory lower bounds for randomized collaborative search and implications for biology. In: Aguilera, M.K. (ed.) DISC 2012. LNCS, vol. 7611, pp. 61–75. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33651-5_5

    Chapter  Google Scholar 

  16. Feinerman, O., Korman, A., Lotker, Z., Sereni, J.-S.: Collaborative search on the plane without communication. In: Proceedings of the 2012 ACM Symposium on Principles of Distributed Computing, pp. 77–86 (2012)

    Google Scholar 

  17. Förster, K.-T., Wattenhofer, R.: Directed graph exploration. In: Baldoni, R., Flocchini, P., Binoy, R. (eds.) OPODIS 2012. LNCS, vol. 7702, pp. 151–165. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-35476-2_11

    Chapter  Google Scholar 

  18. Megow, N., Mehlhorn, K., Schweitzer, P.: Online graph exploration: new results on old and new algorithms. Theor. Comput. Sci. 463, 62–72 (2012)

    Article  MathSciNet  Google Scholar 

  19. Das, S., Dereniowski, D., Kosowski, A., Uznański, P.: Rendezvous of distance-aware mobile agents in unknown graphs. In: Halldórsson, M.M. (ed.) SIROCCO 2014. LNCS, vol. 8576, pp. 295–310. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-09620-9_23

    Chapter  Google Scholar 

  20. Czyzowicz, J., Kranakis, E., Krizanc, D., Narayanan, L., Opatrny, J., Shende, S.: Wireless autonomous robot evacuation from equilateral triangles and squares. In: Papavassiliou, S., Ruehrup, S. (eds.) ADHOC-NOW 2015. LNCS, vol. 9143, pp. 181–194. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-19662-6_13

    Chapter  Google Scholar 

  21. Emek, Y., Langner, T., Stolz, D., Uitto, J., Wattenhofer, R.: How many ants does it take to find the food? Theor. Comput. Sci. 608, 255–267 (2015)

    Article  MathSciNet  Google Scholar 

  22. Förster, K.-T., Nuridini, R., Uitto, J., Wattenhofer, R.: Lower bounds for the capture time: linear, quadratic, and beyond. In: Scheideler, C. (ed.) SIROCCO 2014. LNCS, vol. 9439, pp. 342–356. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-25258-2_24

    Chapter  MATH  Google Scholar 

  23. Borowiecki, P., Das, S., Dereniowski, D., Kuszner, Ł.: Distributed evacuation in graphs with multiple exits. In: Suomela, J. (ed.) SIROCCO 2016. LNCS, vol. 9988, pp. 228–241. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-48314-6_15

    Chapter  Google Scholar 

  24. Brandt, S., Laufenberg, F., Lv, Y., Stolz, D., Wattenhofer, R.: Collaboration without communication: evacuating two robots from a disk. In: Fotakis, D., Pagourtzis, A., Paschos, V.T. (eds.) CIAC 2017. LNCS, vol. 10236, pp. 104–115. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-57586-5_10

    Chapter  Google Scholar 

  25. Gąsieniec, L., Klasing, R., Levcopoulos, C., Lingas, A., Min, J., Radzik, T.: Bamboo garden trimming problem (perpetual maintenance of machines with different attendance urgency factors). In: Steffen, B., Baier, C., van den Brand, M., Eder, J., Hinchey, M., Margaria, T. (eds.) SOFSEM 2017. LNCS, vol. 10139, pp. 229–240. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-51963-0_18

    Chapter  MATH  Google Scholar 

  26. Chuangpishit, H., Czyzowicz, J., Gąsieniec, L., Georgiou, K., Jurdziński, T., Kranakis, E.: Patrolling a path connecting a set of points with unbalanced frequencies of visits. In: Tjoa, A.M., Bellatreche, L., Biffl, S., van Leeuwen, J., Wiedermann, J. (eds.) SOFSEM 2018. LNCS, vol. 10706, pp. 367–380. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-73117-9_26

    Chapter  MATH  Google Scholar 

  27. Dorri, A., Kanhere, S.S., Jurdak, R.: Multi-agent systems: a survey. IEEE Access 6, 28573–28593 (2018)

    Article  Google Scholar 

  28. Disser, Y., Schmitt, S.: Evacuating two robots from a disk: a second cut. In: Censor-Hillel, K., Flammini, M. (eds.) SIROCCO 2019. LNCS, vol. 11639, pp. 200–214. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-24922-9_14

    Chapter  Google Scholar 

  29. Brandt, S., Foerster, K.-T., Richner, B., Wattenhofer, R.: Wireless evacuation on m rays with k searchers. Theor. Comput. Sci. 811, 56–69 (2020)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We would like to thank Nicolas Marxer and Tobias Zwahlen for fruitful discussions and the anonymous reviewers for their helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Béni Egressy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Devillez, H., Egressy, B., Fritsch, R., Wattenhofer, R. (2021). Two-Agent Tree Evacuation. In: Jurdziński, T., Schmid, S. (eds) Structural Information and Communication Complexity. SIROCCO 2021. Lecture Notes in Computer Science(), vol 12810. Springer, Cham. https://doi.org/10.1007/978-3-030-79527-6_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-79527-6_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-79526-9

  • Online ISBN: 978-3-030-79527-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics