Skip to main content

Epidemiology of Post-traumatic Osteoarthritis of the Lower Extremity: Premature Aging of Youthful Joints

  • Chapter
  • First Online:
Early Osteoarthritis

Abstract

Post-traumatic osteoarthritis (PTOA) accounts for approximately 12% of lower extremity symptomatic, radiographic osteoarthritis (OA). Traumatic injury can both increase the risk of OA and accelerate the time to onset as compared to the development of OA from other etiologies. Injuries to the ACL and meniscus are the most prominent contributors to the onset of post-traumatic knee OA, each accounting for nearly 25% of serious knee injuries. There is much debate as to whether ACL reconstruction surgery promotes or diminishes the risk of PTOA. While surgery causes further trauma to the knee, it also stabilizes the knee, thereby reducing the risk of future meniscal tear—another substantial contributor to PTOA. Post-traumatic hip OA is most often a result of acetabular fracture, although genetic factors and high-impact sports have also been shown to promote the early onset of OA. While ankle OA is far less common within the population as compared to knee and hip OA, the rate of post-traumatic ankle OA development is substantially greater for persons sustaining ankle injury than for those sustaining hip or knee injuries, likely as a result of the ankle’s anatomic structure. There are currently no treatments available to reverse or prevent further joint degeneration and the onset of OA, and thus, injury prevention is currently the most effective prevention strategy for post-traumatic OA.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Felson DT, Naimark A, Anderson J, Kazis L, Castelli W, Meenan RF. The prevalence of knee osteoarthritis in the elderly. The Framingham Osteoarthritis Study. Arthritis Rheum. 1987;30(8):914–8.

    Article  CAS  PubMed  Google Scholar 

  2. Jordan JM, Helmick CG, Renner JB, et al. Prevalence of knee symptoms and radiographic and symptomatic knee osteoarthritis in African Americans and Caucasians: the Johnston County Osteoarthritis Project. J Rheumatol. 2007;34(1):172–80.

    PubMed  Google Scholar 

  3. Statista. Resident population of the United States by sex and age as of July 1, 2018. https://www.statista.com/statistics/241488/population-of-the-us-by-sex-and-age/.

  4. Deshpande BR, Katz JN, Solomon DH, et al. Number of persons with symptomatic knee osteoarthritis in the US: impact of race and ethnicity, age, sex, and obesity. Arthritis Care Res (Hoboken). 2016;68(12):1743–50.

    Article  Google Scholar 

  5. LaValley M, McAlindon TE, Evans S, Chaisson CE, Felson DT. Problems in the development and validation of questionnaire-based screening instruments for ascertaining cases with symptomatic knee osteoarthritis: the Framingham Study. Arthritis Rheum. 2001;44(5):1105–13.

    Article  CAS  PubMed  Google Scholar 

  6. Hawker G. Osteoarthritis: a serious disease. Osteoarthritis Research Society International; 2016.

    Google Scholar 

  7. Losina E, Weinstein AM, Reichmann WM, et al. Lifetime risk and age at diagnosis of symptomatic knee osteoarthritis in the US. Arthritis Care Res (Hoboken). 2013;65(5):703–11.

    Article  Google Scholar 

  8. Schett G, Kleyer A, Perricone C, et al. Diabetes is an independent predictor for severe osteoarthritis: results from a longitudinal cohort study. Diabetes Care. 2013;36(2):403–9.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Piva SR, Susko AM, Khoja SS, Josbeno DA, Fitzgerald GK, Toledo FGS. Links between osteoarthritis and diabetes: implications for management from a physical activity perspective. Clin Geriatr Med. 2015;31(1):67–viii.

    Article  PubMed  Google Scholar 

  10. Frieden TR, Jaffe HW, Stephens JW, Thacker SB, Zaza S. Arthritis as a potential barrier to physical activity among adults with obesity—United States, 2007 and 2009. Centers for Disease Control and Prevention; 2011.

    Google Scholar 

  11. Nieves-Plaza M, Castro-Santana LE, Font YM, Mayor AM, Vilá LM. Association of hand or knee osteoarthritis with diabetes mellitus in a population of Hispanics from Puerto Rico. J Clin Rheumatol. 2013;19(1):1–6.

    Article  PubMed  Google Scholar 

  12. Zhang Y, Jordan JM. Epidemiology of osteoarthritis. Clin Geriatr Med. 2010;26(3):355–69.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Srikanth VK, Fryer JL, Zhai G, Winzenberg TM, Hosmer D, Jones G. A meta-analysis of sex differences prevalence, incidence and severity of osteoarthritis. Osteoarthr Cartil. 2005;13(9):769–81.

    Article  Google Scholar 

  14. Centers for Disease Control and Prevention. Disabilities and limitations 2019. https://www.cdc.gov/arthritis/data_statistics/disabilities-limitations.htm. Accessed 3 Feb 2020.

  15. Bitton R. The economic burden of osteoarthritis. Am J Manag Care. 2009;15(8 Suppl):S230–5.

    PubMed  Google Scholar 

  16. CPI for all urban consumers: all items in U.S. city average, all urban consumers, not seasonally adjusted 2019. https://data.bls.gov/pdq/SurveyOutputServlet. Accessed 1 Apr 2020.

  17. Brown TD, Johnston RC, Saltzman CL, Marsh JL, Buckwalter JA. Posttraumatic osteoarthritis: a first estimate of incidence, prevalence, and burden of disease. J Orthop Trauma. 2006;20(10):739–44.

    Article  PubMed  Google Scholar 

  18. Martin JA, Brown T, Heiner A, Buckwalter JA. Post-traumatic osteoarthritis: the role of accelerated chondrocyte senescence. Biorheology. 2004;41(3–4):479–91.

    CAS  PubMed  Google Scholar 

  19. Englund M, Guermazi A, Roemer FW, et al. Meniscal tear in knees without surgery and the development of radiographic osteoarthritis among middle-aged and elderly persons: the Multicenter Osteoarthritis Study. Arthritis Rheum. 2009;60(3):831–9.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Buckwalter JA, Brown TD. Joint injury, repair, and remodeling: roles in post-traumatic osteoarthritis. Clin Orthop Relat Res. 2004;423:7–16.

    Article  Google Scholar 

  21. Buckwalter JA. Articular cartilage injuries. Clin Orthop Relat Res. 2002;402:21–37.

    Article  Google Scholar 

  22. Lohmander LS, Englund PM, Dahl LL, Roos EM. The long-term consequence of anterior cruciate ligament and meniscus injuries: osteoarthritis. Am J Sports Med. 2007;35(10):1756–69.

    Article  PubMed  Google Scholar 

  23. Punzi L, Galozzi P, Luisetto R, et al. Post-traumatic arthritis: overview on pathogenic mechanisms and role of inflammation. RMD Open. 2016;2(2):e000279.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Sokolove J, Lepus CM. Role of inflammation in the pathogenesis of osteoarthritis: latest findings and interpretations. Ther Adv Musculoskelet Dis. 2013;5(2):77–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Goldring MB, Otero M. Inflammation in osteoarthritis. Curr Opin Rheumatol. 2011;23(5):471–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Paschos NK. Anterior cruciate ligament reconstruction and knee osteoarthritis. World J Orthop. 2017;8(3):212–7.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Thomas AC, Hubbard-Turner T, Wikstrom EA, Palmieri-Smith RM. Epidemiology of posttraumatic osteoarthritis. J Athl Train. 2017;52(6):491–6.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Frobell RB, Roos EM, Roos HP, Ranstam J, Lohmander LS. A randomized trial of treatment for acute anterior cruciate ligament tears. N Engl J Med. 2010;363(4):331–42.

    Article  CAS  PubMed  Google Scholar 

  29. Englund M, Roos EM, Lohmander LS. Impact of type of meniscal tear on radiographic and symptomatic knee osteoarthritis: a sixteen-year followup of meniscectomy with matched controls. Arthritis Rheum. 2003;48(8):2178–87.

    Article  CAS  PubMed  Google Scholar 

  30. Sanders TL, Maradit Kremers H, Bryan AJ, et al. Incidence of anterior cruciate ligament tears and reconstruction: a 21-year population-based study. Am J Sports Med. 2016;44(6):1502–7.

    Article  PubMed  Google Scholar 

  31. Lohmander LS, Ostenberg A, Englund M, Roos H. High prevalence of knee osteoarthritis, pain, and functional limitations in female soccer players twelve years after anterior cruciate ligament injury. Arthritis Rheum. 2004;50(10):3145–52.

    Article  CAS  PubMed  Google Scholar 

  32. von Porat A, Roos EM, Roos H. High prevalence of osteoarthritis 14 years after an anterior cruciate ligament tear in male soccer players: a study of radiographic and patient relevant outcomes. Ann Rheum Dis. 2004;63(3):269–73.

    Article  Google Scholar 

  33. Hewett TE, Myer GD, Ford KR, Paterno MV, Quatman CE. Mechanisms, prediction, and prevention of ACL injuries: cut risk with three sharpened and validated tools. J Orthop Res. 2016;34(11):1843–55.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Frobell RB, Roos HP, Roos EM, Roemer FW, Ranstam J, Lohmander LS. Treatment for acute anterior cruciate ligament tear: five year outcome of randomised trial. BMJ. 2013;346:f232.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Kessler MA, Behrend H, Henz S, Stutz G, Rukavina A, Kuster MS. Function, osteoarthritis and activity after ACL-rupture: 11 years follow-up results of conservative versus reconstructive treatment. Knee Surg Sports Traumatol Arthrosc. 2008;16(5):442–8.

    Article  CAS  PubMed  Google Scholar 

  36. Dunn WR, Lyman S, Lincoln AE, Amoroso PJ, Wickiewicz T, Marx RG. The effect of anterior cruciate ligament reconstruction on the risk of knee reinjury. Am J Sports Med. 2004;32(8):1906–14.

    Article  PubMed  Google Scholar 

  37. Kim S, Bosque J, Meehan JP, Jamali A, Marder R. Increase in outpatient knee arthroscopy in the United States: a comparison of National Surveys of Ambulatory Surgery, 1996 and 2006. JBJS. 2011;93(11):994–1000.

    Article  Google Scholar 

  38. Feucht MJ, Bigdon S, Bode G, et al. Associated tears of the lateral meniscus in anterior cruciate ligament injuries: risk factors for different tear patterns. J Orthop Surg Res. 2015;10:34.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Smith JP, Barrett GR. Medial and lateral meniscal tear patterns in anterior cruciate ligament-deficient knees: a prospective analysis of 575 tears. Am J Sports Med. 2001;29(4):415–9.

    Article  PubMed  Google Scholar 

  40. Levy BA. Is early reconstruction necessary for all anterior cruciate ligament tears? N Engl J Med. 2010;363(4):386–8.

    Article  CAS  PubMed  Google Scholar 

  41. Englund M, Lohmander LS. Risk factors for symptomatic knee osteoarthritis fifteen to twenty-two years after meniscectomy. Arthritis Rheum. 2004;50(9):2811–9.

    Article  CAS  PubMed  Google Scholar 

  42. Roos H, Lauren M, Adalberth T, Roos EM, Jonsson K, Lohmander LS. Knee osteoarthritis after meniscectomy: prevalence of radiographic changes after twenty-one years, compared with matched controls. Arthritis Rheum. 1998;41(4):687–93.

    Article  CAS  PubMed  Google Scholar 

  43. Stiebel M, Miller LE, Block JE. Post-traumatic knee osteoarthritis in the young patient: therapeutic dilemmas and emerging technologies. Open Access J Sports Med. 2014;5:73–9.

    PubMed  PubMed Central  Google Scholar 

  44. Miller BS, Briggs KK, Downie B, Steadman JR. Clinical outcomes following the microfracture procedure for chondral defects of the knee: a longitudinal data analysis. Cartilage. 2010;1(2):108–12.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Gobbi A, Karnatzikos G, Kumar A. Long-term results after microfracture treatment for full-thickness knee chondral lesions in athletes. Knee Surg Sports Traumatol Arthrosc. 2014;22(9):1986–96.

    Article  PubMed  Google Scholar 

  46. Fu FH, Soni A. ACI versus microfracture: the debate continues: commentary on an article by Gunnar Knutsen, MD, PhD, et al.: “A Randomized Multicenter Trial Comparing Autologous Chrondrocyte Implantation with Microfracture: Long-Term Follow-up at 14 to 15 Years”. JBJS. 2016;98(16):e69.

    Article  Google Scholar 

  47. Vasiliadis HS, Wasiak J. Autologous chondrocyte implantation for full thickness articular cartilage defects of the knee. Cochrane Database Syst Rev. 2010;(10).

    Google Scholar 

  48. Knutsen G, Drogset JO, Engebretsen L, et al. A randomized trial comparing autologous chondrocyte implantation with microfracture. Findings at five years. J Bone Joint Surg Am. 2007;89(10):2105–12.

    Article  PubMed  Google Scholar 

  49. Knutsen G, Drogset JO, Engebretsen L, et al. A randomized multicenter trial comparing autologous chondrocyte implantation with microfracture: long-term follow-up at 14 to 15 years. J Bone Joint Surg Am. 2016;98(16):1332–9.

    Article  PubMed  Google Scholar 

  50. Knutsen G, Engebretsen L, Ludvigsen TC, et al. Autologous chondrocyte implantation compared with microfracture in the knee: a randomized trial. JBJS. 2004;86(3):455–64.

    Article  Google Scholar 

  51. Brittberg M, Recker D, Ilgenfritz J, Saris DBF. Matrix-applied characterized autologous cultured chondrocytes versus microfracture: five-year follow-up of a prospective randomized trial. Am J Sports Med. 2018;46(6):1343–51.

    Article  PubMed  Google Scholar 

  52. Gou G-H, Tseng F-J, Wang S-H, et al. Autologous chondrocyte implantation versus microfracture in the knee: a meta-analysis and systematic review. Arthroscopy. 2020;36(1):289–303.

    Article  PubMed  Google Scholar 

  53. Gelber AC, Hochberg MC, Mead LA, Wang NY, Wigley FM, Klag MJ. Joint injury in young adults and risk for subsequent knee and hip osteoarthritis. Ann Intern Med. 2000;133(5):321–8.

    Article  CAS  PubMed  Google Scholar 

  54. Clifford AG, Gabriel SM, O'Connell M, Lowe D, Miller LE, Block JE. The KineSpring(®) Knee Implant System: an implantable joint-unloading prosthesis for treatment of medial knee osteoarthritis. Med Devices (Auckl). 2013;6:69–76.

    Google Scholar 

  55. Donnell-Fink LA, Klara K, Collins JE, et al. Effectiveness of knee injury and anterior cruciate ligament tear prevention programs: a meta-analysis. PLoS One. 2015;10(12):e0144063.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Etty Griffin LY. Neuromuscular training and injury prevention in sports. Clin Orthop Relat Res. 2003;409:53–60.

    Article  Google Scholar 

  57. Tveit M, Rosengren BE, Nilsson JA, Karlsson MK. Former male elite athletes have a higher prevalence of osteoarthritis and arthroplasty in the hip and knee than expected. Am J Sports Med. 2012;40(3):527–33.

    Article  PubMed  Google Scholar 

  58. Cahueque M, Martínez M, Cobar A, Bregni M. Early reduction of acetabular fractures decreases the risk of post-traumatic hip osteoarthritis? J Clin Orthop Trauma. 2017;8(4):320–6.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Packer JD, Safran MR. The etiology of primary femoroacetabular impingement: genetics or acquired deformity? J Hip Preserv Surg. 2015;2(3):249–57.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Agricola R, Heijboer MP, Bierma-Zeinstra SMA, Verhaar JAN, Weinans H, Waarsing JH. Cam impingement causes osteoarthritis of the hip: a nationwide prospective cohort study (CHECK). Ann Rheum Dis. 2013;72(6):918–23.

    Article  PubMed  Google Scholar 

  61. Resnick D. The ‘tilt deformity’ of the femoral head in osteoarthritis of the hip: a poor indicator of previous epiphysiolysis. Clin Radiol. 1976;27(3):355–63.

    Article  CAS  PubMed  Google Scholar 

  62. Murray RO, Duncan C. Athletic activity in adolescence as an etiological factor in degenerative hip disease. J Bone Joint Surg Br. 1971;53(3):406–19.

    Article  CAS  PubMed  Google Scholar 

  63. Jacobsen S, Sonne-Holm S. Hip dysplasia: a significant risk factor for the development of hip osteoarthritis. A cross-sectional survey. Rheumatology. 2004;44(2):211–8.

    Article  PubMed  Google Scholar 

  64. Helgesson L, Johansson PK, Aurell Y, Tiderius C-J, Kärrholm J, Riad J. Early osteoarthritis after slipped capital femoral epiphysis. Acta Orthop. 2018;89(2):222–8.

    Article  PubMed  Google Scholar 

  65. Eom JS, Jung H-G. Ankle osteoarthritis (I): joint preservation surgery. In: Jung H-G, editor. Foot and ankle disorders: an illustrated reference. New York: Springer. p. 185–222.

    Google Scholar 

  66. Marsh JL, Weigel DP, Dirschl DR. Tibial plafond fractures. How do these ankles function over time? J Bone Joint Surg Am. 2003;85(2):287–95.

    Article  PubMed  Google Scholar 

  67. Horisberger M, Valderrabano V, Hintermann B. Posttraumatic ankle osteoarthritis after ankle-related fractures. J Orthop Trauma. 2009;23(1):60–7.

    Article  PubMed  Google Scholar 

  68. Valderrabano V, Horisberger M, Russell I, Dougall H, Hintermann B. Etiology of ankle osteoarthritis. Clin Orthop Relat Res. 2009;467(7):1800–6.

    Article  PubMed  Google Scholar 

  69. Etter C, Ganz R. Long-term results of tibial plafond fractures treated with open reduction and internal fixation. Arch Orthop Trauma Surg. 1991;110(6):277–83.

    Article  CAS  PubMed  Google Scholar 

  70. Jacob N, Amin A, Giotakis N, Narayan B, Nayagam S, Trompeter AJ. Management of high-energy tibial pilon fractures. Strategies Trauma Limb Reconstr. 2015;10(3):137–47.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Luo TD, Eady JM, Aneja A, Miller AN. Classifications in brief: Rüedi-Allgöwer classification of tibial plafond fractures. Clin Orthop Relat Res. 2017;475(7):1923–8.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Sitnik A, Beletsky A, Schelkun S. Intra-articular fractures of the distal tibia: current concepts of management. EFORT Open Rev. 2017;2(8):352–61.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey N. Katz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 ISAKOS

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Arant, K.R., Katz, J.N. (2022). Epidemiology of Post-traumatic Osteoarthritis of the Lower Extremity: Premature Aging of Youthful Joints. In: Lattermann, C., Madry, H., Nakamura, N., Kon, E. (eds) Early Osteoarthritis. Springer, Cham. https://doi.org/10.1007/978-3-030-79485-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-79485-9_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-79484-2

  • Online ISBN: 978-3-030-79485-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics