Skip to main content

MRI Relaxometry as Early Measures of OA

  • Chapter
  • First Online:
Early Osteoarthritis

Abstract

As discussed in the previous chapter, quantitative magnetic resonance imaging (MRI) can detect early changes in cartilage collagen-proteoglycan matrix at early stages of osteoarthritis (OA). This chapter focuses on MRI relaxometry techniques, including T1, T2, T2*, and T imaging. Delayed gadolinium-enhanced MRI of cartilage (dGEMRIC), T2, or T imaging have been suggested to identify early cartilage degeneration before morphological changes occur. Early detection provides a valuable time window for early interventions and development of an OA prevention strategy. The role of T2* imaging in cartilage is less established. While dGEMRIC (T1 mapping) and T2 mapping are clinically available, manufacturers have not yet released T acquisitions as products for clinical MR systems. dGEMRIC provides specific measures related to proteoglycan changes in cartilage matrix, while T2 and T measures are less specific and can be affected by changes in hydration, collagen, and proteoglycan. T imaging is also prone to deposit more energy to tissue with the usage of spin-lock pulses with long duration. However, in contrast to T2 and T imaging, the need for contrast agent injection and the relatively long time commitment for contrast equilibration have hindered widespread clinical application of dGEMRIC. Compared to T2, T may provide more sensitive detection of early proteoglycan loss. Technical basics and clinical applications of each technique are discussed in this chapter, followed by limitations and future directions in the context of improving early diagnosis and prognosis of OA.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bashir A, Gray ML, Burstein D. Gd-DTPA2- as a measure of cartilage degradation. Magn Reson Med. 1996;36(5):665–73.

    Article  CAS  PubMed  Google Scholar 

  2. Bashir A, et al. Glycosaminoglycan in articular cartilage: in vivo assessment with delayed Gd DTPA 2- -enhanced MR imaging. Radiology. 1997;205(2):551–8.

    Article  CAS  PubMed  Google Scholar 

  3. Bashir A, et al. Nondestructive imaging of human cartilage glycosaminoglycan concentration by MRI. Magn Reson Med. 1999;41(5):857–65.

    Article  CAS  PubMed  Google Scholar 

  4. Gray ML, et al. Elizabeth Winston Lanier Award Winner. Magnetic resonance imaging of cartilage glycosaminoglycan: basic principles, imaging technique, and clinical applications. J Orthop Res. 2007;26(3):281–91.

    Article  CAS  Google Scholar 

  5. Zheng S, Xia Y. The impact of the relaxivity definition on the quantitative measurement of glycosaminoglycans in cartilage by the MRI dGEMRIC method. Magn Reson Med. 2010;63(1):25–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kulmala KA, et al. Diffusion coefficients of articular cartilage for different CT and MRI contrast agents. Med Eng Phys. 2010;32(8):878–82.

    Article  CAS  PubMed  Google Scholar 

  7. Nieminen MT, et al. Spatial assessment of articular cartilage proteoglycans with Gd-DTPA-enhanced T1 imaging. Magn Reson Med. 2002;48(4):640–8.

    Article  CAS  PubMed  Google Scholar 

  8. Juras V, et al. In vitro determination of biomechanical properties of human articular cartilage in osteoarthritis using multi-parametric MRI. J Magn Reson. 2009;197(1):40–7.

    Article  CAS  PubMed  Google Scholar 

  9. Samosky JT, et al. Spatially-localized correlation of dGEMRIC-measured GAG distribution and mechanical stiffness in the human tibial plateau. J Orthop Res. 2005;23(1):93–101.

    Article  CAS  PubMed  Google Scholar 

  10. Baldassarri M, et al. Relationship between cartilage stiffness and dGEMRIC index: correlation and prediction. J Orthop Res. 2007;25(7):904–12.

    Article  PubMed  Google Scholar 

  11. Schmaranzer F, et al. Do dGEMRIC and T2 imaging correlate with histologic cartilage degeneration in an experimental ovine FAI model? Clin Orthop Relat Res. 2019;477(5):990–1003.

    Article  PubMed  Google Scholar 

  12. Gillis A, Gray M, Burstein D. Relaxivity and diffusion of gadolinium agents in cartilage. Magn Reson Med. 2002;48(6):1068–71.

    Article  CAS  PubMed  Google Scholar 

  13. Tiderius CJ, et al., Gd-DTPA2)-enhanced MRI of femoral knee cartilage: a dose-response study in healthy volunteers. Magn Reson Med. 2001;46(6):1067–71.

    Google Scholar 

  14. Burstein D, et al. Protocol issues for delayed Gd(DTPA)(2-)-enhanced MRI (dGEMRIC) for clinical evaluation of articular cartilage. Magn Reson Med. 2001;45(1):36–41.

    Article  CAS  PubMed  Google Scholar 

  15. Winalski CS, et al. Enhancement of joint fluid with intravenously administered gadopentetate dimeglumine: technique, rationale, and implications. Radiology. 1993;187(1):179–85.

    Article  CAS  PubMed  Google Scholar 

  16. McKenzie CA, et al. Three-dimensional delayed gadolinium-enhanced MRI of cartilage (dGEMRIC) at 1.5T and 3.0T. J Magn Reson Imaging. 2006;24(4):928–33.

    Article  PubMed  Google Scholar 

  17. Kimelman T, et al. Three-dimensional T1 mapping for dGEMRIC at 3.0 T using the Look Locker method. Investig Radiol. 2006;41(2):198–203.

    Article  Google Scholar 

  18. Siversson C, et al. Repeatability of T1-quantification in dGEMRIC for three different acquisition techniques: two-dimensional inversion recovery, three-dimensional look locker, and three-dimensional variable flip angle. J Magn Reson Imaging. 2010;31(5):1203–9.

    Article  PubMed  Google Scholar 

  19. Fleming BC, et al. Delayed Gadolinium-Enhanced MR Imaging of Cartilage (dGEMRIC) following ACL injury. Osteoarthr Cartil. 2010;18(5):662–7.

    Article  CAS  Google Scholar 

  20. Neuman P, et al. Longitudinal assessment of femoral knee cartilage quality using contrast enhanced MRI (dGEMRIC) in patients with anterior cruciate ligament injury—comparison with asymptomatic volunteers. Osteoarthr Cartil. 2011;19(8):977–83.

    Article  CAS  Google Scholar 

  21. Ericsson YB, et al. Relationship between cartilage glycosaminoglycan content (assessed with dGEMRIC) and OA risk factors in meniscectomized patients. Osteoarthr Cartil. 2009;17(5):565–70.

    Article  CAS  Google Scholar 

  22. Palmer A, et al. Diagnostic and prognostic value of delayed Gadolinium Enhanced Magnetic Resonance Imaging of Cartilage (dGEMRIC) in early osteoarthritis of the hip. Osteoarthr Cartil. 2017;25(9):1468–77.

    Article  CAS  Google Scholar 

  23. Guo Y, et al. Association of femoroacetabular impingement and delayed gadolinium-enhanced magnetic resonance imaging of cartilage: a population-based study. Arthritis Care Res (Hoboken). 2018;70(8):1160–8.

    Article  Google Scholar 

  24. Pollard TC, et al. Localized cartilage assessment with three-dimensional dGEMRIC in asymptomatic hips with normal morphology and cam deformity. J Bone Joint Surg Am. 2010;92(15):2557–69.

    Article  CAS  PubMed  Google Scholar 

  25. Mamisch TC, et al. Delayed gadolinium-enhanced magnetic resonance imaging of cartilage (dGEMRIC) in Femoacetabular impingement. J Orthop Res. 2011;29(9):1305–11.

    Article  PubMed  Google Scholar 

  26. Owman H, et al. Association between findings on delayed gadolinium-enhanced magnetic resonance imaging of cartilage and future knee osteoarthritis. Arthritis Rheum. 2008;58(6):1727–30.

    Article  PubMed  Google Scholar 

  27. Owman H, et al. Association between delayed gadolinium-enhanced MRI of cartilage (dGEMRIC) and joint space narrowing and osteophytes: a cohort study in patients with partial meniscectomy with 11 years of follow-up. Osteoarthr Cartil. 2014;22(10):1537–41.

    Article  CAS  Google Scholar 

  28. Zilkens C, et al. Current knowledge and importance of dGEMRIC techniques in diagnosis of hip joint diseases. Skelet Radiol. 2015;44(8):1073–83.

    Article  Google Scholar 

  29. Tjornstrand J, et al. Osteoarthritis development related to cartilage quality-the prognostic value of dGEMRIC after anterior cruciate ligament injury. Osteoarthr Cartil. 2019;27(11):1647–52.

    Article  CAS  Google Scholar 

  30. Kim YJ, et al. Assessment of early osteoarthritis in hip dysplasia with delayed gadolinium-enhanced magnetic resonance imaging of cartilage. J Bone Joint Surg Am. 2003;85-A(10):1987–92.

    Article  Google Scholar 

  31. Cunningham T, et al. Delayed gadolinium-enhanced magnetic resonance imaging of cartilage to predict early failure of Bernese periacetabular osteotomy for hip dysplasia. J Bone Joint Surg Am. 2006;88(7):1540–8.

    Article  PubMed  Google Scholar 

  32. Trattnig S, et al. Magnetic resonance imaging of cartilage repair: a review. Cartilage. 2011;2(1):5–26.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Guermazi A, et al. State of the art: MR imaging after knee cartilage repair surgery. Radiology. 2015;277(1):23–43.

    Article  PubMed  Google Scholar 

  34. Lansdown DA, et al. Relationship between quantitative MRI biomarkers and patient-reported outcome measures after cartilage repair surgery: a systematic review. Orthop J Sports Med. 2018;6(4):2325967118765448.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Link TM, Neumann J, Li X. Prestructural cartilage assessment using MRI. J Magn Reson Imaging. 2017;45(4):949–65.

    Article  PubMed  Google Scholar 

  36. Pai A, Li X, Majumdar S. A comparative study at 3 T of sequence dependence of T2 quantitation in the knee. Magn Reson Imaging. 2008;26(9):1215–20.

    Article  PubMed  PubMed Central  Google Scholar 

  37. David-Vaudey E, et al. T2 relaxation time measurements in osteoarthritis. Magn Reson Imaging. 2004;22(5):673–82.

    Article  PubMed  Google Scholar 

  38. Joseph GB, et al. Baseline mean and heterogeneity of MR cartilage T2 are associated with morphologic degeneration of cartilage, meniscus, and bone marrow over 3 years—data from the osteoarthritis initiative. Osteoarthr Cartil. 2012;20(7):727–35.

    Article  CAS  Google Scholar 

  39. Jungmann PM, et al. T(2) relaxation time measurements are limited in monitoring progression, once advanced cartilage defects at the knee occur: longitudinal data from the osteoarthritis initiative. J Magn Reson Imaging. 2013;38(6):1415–24.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Liebl H, et al. Early T2 changes predict onset of radiographic knee osteoarthritis: data from the osteoarthritis initiative. Ann Rheum Dis. 2015;74(7):1353–9.

    Article  PubMed  Google Scholar 

  41. Prasad AP, et al. T(1)rho and T(2) relaxation times predict progression of knee osteoarthritis. Osteoarthr Cartil. 2013;21(1):69–76.

    Article  CAS  Google Scholar 

  42. Joseph GB, et al. Tool for osteoarthritis risk prediction (TOARP) over 8 years using baseline clinical data, X-ray, and MRI: data from the osteoarthritis initiative. J Magn Reson Imaging. 2018;47(6):1517–26.

    Article  PubMed  Google Scholar 

  43. Kanis JA, et al. FRAX and its applications to clinical practice. Bone. 2009;44(5):734–43.

    Article  PubMed  Google Scholar 

  44. Joseph GB, et al. A reference database of cartilage 3 T MRI T2 values in knees without diagnostic evidence of cartilage degeneration: data from the osteoarthritis initiative. Osteoarthr Cartil. 2015;23(6):897–905.

    Article  CAS  Google Scholar 

  45. Kijowski R, et al. Evaluation of the articular cartilage of the knee joint: value of adding a T2 mapping sequence to a routine MR imaging protocol. Radiology. 2013;267(2):503–13.

    Article  PubMed  Google Scholar 

  46. Su F, et al. The association between MR T1rho and T2 of cartilage and patient-reported outcomes after ACL injury and reconstruction. Osteoarthr Cartil. 2016;24(7):1180–9.

    Article  CAS  Google Scholar 

  47. Dautry R, et al. Correlation of MRI T2 mapping sequence with knee pain location in young patients with normal standard MRI. JBR-BTR. 2014;97(1):11–6.

    CAS  PubMed  Google Scholar 

  48. Baum T, et al. Association of magnetic resonance imaging-based knee cartilage T2 measurements and focal knee lesions with knee pain: data from the osteoarthritis initiative. Arthritis Care Res (Hoboken). 2012;64(2):248–55.

    Article  Google Scholar 

  49. Gersing AS, et al. Weight loss regimen in obese and overweight individuals is associated with reduced cartilage degeneration: 96-month data from the osteoarthritis initiative. Osteoarthr Cartil. 2019;27(6):863–70.

    Article  CAS  Google Scholar 

  50. Neumann J, et al. Type 2 diabetes patients have accelerated cartilage matrix degeneration compared to diabetes free controls: data from the osteoarthritis initiative. Osteoarthr Cartil. 2018;26(6):751–61.

    Article  CAS  Google Scholar 

  51. Atkinson HF, et al. MRI T2 and T1rho relaxation in patients at risk for knee osteoarthritis: a systematic review and meta-analysis. BMC Musculoskelet Disord. 2019;20(1):182.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Bittersohl B, et al. T2* mapping of hip joint cartilage in various histological grades of degeneration. Osteoarthr Cartil. 2012;20(7):653–60.

    Article  CAS  Google Scholar 

  53. Ellermann J, et al. Acetabular cartilage assessment in patients with femoroacetabular impingement by using T2* mapping with arthroscopic verification. Radiology. 2014;271(2):512–23.

    Article  PubMed  Google Scholar 

  54. Hesper T, et al. T2*-mapping of acetabular cartilage in patients with femoroacetabular impingement at 3 Tesla: comparative analysis with arthroscopic findings. Cartilage. 2018;9(2):118–26.

    Article  PubMed  Google Scholar 

  55. Tsai PH, et al. The value of MR T2* measurements in normal and osteoarthritic knee cartilage: effects of age, sex, and location. Eur Radiol. 2019;29(8):4514–22.

    Article  PubMed  Google Scholar 

  56. Tao H, et al. Quantitative T2-mapping and T2()-mapping evaluation of changes in cartilage matrix after acute anterior cruciate ligament rupture and the correlation between the results of both methods. Biomed Res Int. 2018;2018:7985672.

    PubMed  PubMed Central  Google Scholar 

  57. Williams A, Qian Y, Chu CR. UTE-T2 * mapping of human articular cartilage in vivo: a repeatability assessment. Osteoarthr Cartil. 2011;19(1):84–8.

    Article  CAS  Google Scholar 

  58. Qian Y, et al. Multicomponent T2* mapping of knee cartilage: technical feasibility ex vivo. Magn Reson Med. 2010;64(5):1426–31.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Du J, et al. Ultrashort echo time imaging with bicomponent analysis. Magn Reson Med. 2012;67(3):645–9.

    Article  PubMed  Google Scholar 

  60. Chu CR, et al. Quantitative magnetic resonance imaging UTE-T2* mapping of cartilage and meniscus healing after anatomic anterior cruciate ligament reconstruction. Am J Sports Med. 2014;42(8):1847–56.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Williams AA, et al. MRI UTE-T2* shows high incidence of cartilage subsurface matrix changes 2 years after ACL reconstruction. J Orthop Res. 2019;37(2):370–7.

    Article  PubMed  Google Scholar 

  62. Redfield AG. Nucclear spin thermodynamics in the rotating frame. Science. 1969;164:1015–23.

    Article  CAS  PubMed  Google Scholar 

  63. Wang N, Xia Y. Experimental issues in the measurement of multi-component relaxation times in articular cartilage by microscopic MRI. J Magn Reson. 2013;235:15–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Akella SV, et al. Proteoglycan-induced changes in T1rho-relaxation of articular cartilage at 4T. Magn Reson Med. 2001;46(3):419–23.

    Article  CAS  PubMed  Google Scholar 

  65. Regatte R, et al. T1rho relaxation mapping in human osteoarthritis (OA) cartilage: comparison of T1rho with T2. J Magn Reson Imaging. 2006;23(4):547–53.

    Article  PubMed  Google Scholar 

  66. Li X, et al. Quantitative MRI using T1rho and T2 in human osteoarthritic cartilage specimens: correlation with biochemical measurements and histology. Magn Reson Imaging. 2011;29(3):324–34.

    Article  CAS  PubMed  Google Scholar 

  67. Collins AT, et al. Selective enzymatic digestion of proteoglycans and collagens alters cartilage T1rho and T2 relaxation times. Ann Biomed Eng. 2019;47(1):190–201.

    Article  PubMed  Google Scholar 

  68. Witschey WR, et al. T1rho MRI quantification of arthroscopically confirmed cartilage degeneration. Magn Reson Med. 2010;63(5):1376–82.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Gupta R, et al. MR T(1)rho quantification of cartilage focal lesions in acutely injured knees: correlation with arthroscopic evaluation. Magn Reson Imaging. 2014;32(10):1290–6.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Wheaton AJ, et al. Quantification of cartilage biomechanical and biochemical properties via T1rho magnetic resonance imaging. Magn Reson Med. 2005;54(5):1087–93.

    Article  CAS  PubMed  Google Scholar 

  71. Tang SY, et al. Local tissue properties of human osteoarthritic cartilage correlate with magnetic resonance T(1) rho relaxation times. J Orthop Res. 2011;29(9):1312–9.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Akella SV, et al. Reduction of residual dipolar interaction in cartilage by spin-lock technique. Magn Reson Med. 2004;52(5):1103–9.

    Article  PubMed  Google Scholar 

  73. Shao H, et al. Magic angle effect plays a major role in both T1rho and T2 relaxation in articular cartilage. Osteoarthr Cartil. 2017;25(12):2022–30.

    Article  CAS  Google Scholar 

  74. Rautiainen J, et al. Multiparametric MRI assessment of human articular cartilage degeneration: correlation with quantitative histology and mechanical properties. Magn Reson Med. 2015;74(1):249–59.

    Article  CAS  PubMed  Google Scholar 

  75. MacKay JW, et al. Systematic review and meta-analysis of the reliability and discriminative validity of cartilage compositional MRI in knee osteoarthritis. Osteoarthr Cartil. 2018;26(9):1140–52.

    Article  CAS  Google Scholar 

  76. Schneider E, et al. The osteoarthritis initiative (OAI) magnetic resonance imaging quality assurance methods and results. Osteoarthr Cartil. 2008;16(9):994–1004.

    Article  CAS  Google Scholar 

  77. Li X, et al. Cartilage T1rho and T2 relaxation times: longitudinal reproducibility and variations using different coils, MR systems and sites. Osteoarthr Cartil. 2015;23(12):2214–23.

    Article  CAS  Google Scholar 

  78. Balamoody S, et al. Magnetic resonance transverse relaxation time T2 of knee cartilage in osteoarthritis at 3-T: a cross-sectional multicentre, multivendor reproducibility study. Skelet Radiol. 2013;42(4):511–20.

    Article  Google Scholar 

  79. Kim J, Mamoto K, Lartey R, Xu K, Nakamura K, Shin W, Winalski CS, Obuchowski N, Tanaka M, Bahroos E, Link TM, Hardy PA, Peng Q, Reddy R, Botto-van Bemden A, Liu K, Peters RD, Wu C, Li X. Multi-vendor multi-site T1rho and T2 quantification of knee cartilage. Osteoarthr Cartil. 2020;28(12):1539–50.

    Article  CAS  Google Scholar 

  80. Li X, et al. Cartilage in anterior cruciate ligament-reconstructed knees: MR imaging T1{rho} and T2—initial experience with 1-year follow-up. Radiology. 2011;258(2):505–14.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Klocke NF, et al. Comparison of T1rho, dGEMRIC, and quantitative T2 MRI in preoperative ACL rupture patients. Acad Radiol. 2013;20(1):99–107.

    Article  PubMed  Google Scholar 

  82. Eagle S, Potter HG, Koff MF. Morphologic and quantitative magnetic resonance imaging of knee articular cartilage for the assessment of post-traumatic osteoarthritis. J Orthop Res. 2017;35(3):412–23.

    Article  PubMed  Google Scholar 

  83. Pedoia V, et al. Analysis of the articular cartilage T1rho and T2 relaxation times changes after ACL reconstruction in injured and contralateral knees and relationships with bone shape. J Orthop Res. 2017;35(3):707–17.

    Article  PubMed  Google Scholar 

  84. Amano K, et al. Effects of surgical factors on cartilage can be detected using quantitative magnetic resonance imaging after anterior cruciate ligament reconstruction. Am J Sports Med. 2017;45(5):1075–84.

    Article  PubMed  Google Scholar 

  85. Pietrosimone B, et al. Associations between cartilage proteoglycan density and patient outcomes 12months following anterior cruciate ligament reconstruction. Knee. 2018;25(1):118–29.

    Article  PubMed  Google Scholar 

  86. Osaki K, et al. Characterization of biochemical cartilage change after anterior cruciate ligament injury using T1rho mapping magnetic resonance imaging. Orthop J Sports Med. 2015;3(5):2325967115585092.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Kumar D, et al. Frontal plane knee mechanics and early cartilage degeneration in people with anterior cruciate ligament reconstruction: a longitudinal study. Am J Sports Med. 2018;46(2):378–87.

    Article  PubMed  Google Scholar 

  88. Amano K, et al. Synovial fluid profile at the time of anterior cruciate ligament reconstruction and its association with cartilage matrix composition 3 years after surgery. Am J Sports Med. 2018;46(4):890–9.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Pietrosimone B, et al. Quadriceps weakness associates with greater T1rho relaxation time in the medial femoral articular cartilage 6 months following anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc. 2019;27(8):2632–42.

    Article  PubMed  Google Scholar 

  90. Zhong Q, et al. 3D bone-shape changes and their correlations with cartilage T1rho and T2 relaxation times and patient-reported outcomes over 3-years after ACL reconstruction. Osteoarthr Cartil. 2019;27(6):915–21.

    Article  CAS  Google Scholar 

  91. Lansdown DA, et al. A comprehensive in vivo kinematic, quantitative MRI and functional evaluation following ACL reconstruction—a comparison between mini-two incision and anteromedial portal femoral tunnel drilling. Knee. 2015;22(6):547–53.

    Article  PubMed  Google Scholar 

  92. Rauscher I, et al. Meniscal measurements of T1rho and T2 at MR imaging in healthy subjects and patients with osteoarthritis. Radiology. 2008;249(2):591–600.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Kajabi AW, et al. Assessment of meniscus with adiabatic T1rho and T2rho relaxation time in asymptomatic subjects and patients with mild osteoarthritis: a feasibility study. Osteoarthr Cartil. 2018;26(4):580–7.

    Article  CAS  Google Scholar 

  94. Knox J, et al. Longitudinal changes in MR T1rho/T2 signal of meniscus and its association with cartilage T1p/T2 in ACL-injured patients. Osteoarthr Cartil. 2018;26(5):689–96.

    Article  CAS  Google Scholar 

  95. Liu F, et al. Multicomponent T2 analysis of articular cartilage with synovial fluid partial volume correction. J Magn Reson Imaging. 2016;43(5):1140–7.

    Article  PubMed  Google Scholar 

  96. Sharafi A, Chang G, Regatte RR. Biexponential T2 relaxation estimation of human knee cartilage in vivo at 3T. J Magn Reson Imaging. 2018;47(3):809–19.

    Article  PubMed  Google Scholar 

  97. Wang P, Block J, Gore JC. Chemical exchange in knee cartilage assessed by R1rho (1/T1rho) dispersion at 3T. Magn Reson Imaging. 2015;33(1):38–42.

    Article  PubMed  CAS  Google Scholar 

  98. Zhou Y, et al. Accelerating T1rho cartilage imaging using compressed sensing with iterative locally adapted support detection and JSENSE. Magn Reson Med. 2016;75(4):1617–29.

    Article  PubMed  Google Scholar 

  99. Zibetti MVW, et al. Accelerating 3D-T1rho mapping of cartilage using compressed sensing with different sparse and low rank models. Magn Reson Med. 2018;80(4):1475–91.

    Article  PubMed  PubMed Central  Google Scholar 

  100. Chalian M, et al. The QIBA Profile for MRI-Based Compositional Imaging of Knee Cartilage. Radiology. 2021; In press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaojuan Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 ISAKOS

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Li, X., Winalski, C.S., Link, T.M. (2022). MRI Relaxometry as Early Measures of OA. In: Lattermann, C., Madry, H., Nakamura, N., Kon, E. (eds) Early Osteoarthritis. Springer, Cham. https://doi.org/10.1007/978-3-030-79485-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-79485-9_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-79484-2

  • Online ISBN: 978-3-030-79485-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics