Skip to main content

Coverage-Guided Fairness Testing

  • Chapter
  • First Online:
Computer and Information Science 2021—Summer (ICIS 2021)

Part of the book series: Studies in Computational Intelligence ((SCI,volume 985))

Included in the following conference series:

Abstract

Software testing is a crucial task. Unlike conventional software, AI software that uses decision-making algorithms or classifiers needs to be tested for discrimination or bias. Such bias can cause discrimination towards certain individuals based on their protected attributes, such as race, gender or nationality. It is a major concern to have discrimination as an unintended behavior. Previous work tested for discrimination randomly, which has resulted in variations in the results for each test execution. These varying results indicate that, for each test execution, there is discrimination that is not found. Even though it is nearly impossible to find all discrimination unless we check all possible combinations in the system, it is important to detect as much discrimination as possible. We thus propose Coverage-Guided Fairness Testing (CGFT). CGFT leverages combinatorial testing to generate an evenly-distributed test suite. We evaluated CGFT with two different datasets, creating three models with each. The results show an improvement in the number of unfairness found using CGFT compared to previous work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aggarwal, A., Lohia, P., Nagar, S., Dey, K., Saha, D.: Black box fairness testing of machine learning models. In: Proceedings of the ACM Joint Meeting on European Software Engineering Conference and Symposium on the Foundations of Software Engineering, ESEC/SIGSOFT FSE , 2019, pp. 625–635. ACM (2019). https://doi.org/10.1145/3338906.3338937

  2. Bellamy, R.K., Dey, K., Hind, M., Hoffman, S.C., Houde, S., Kannan, K., Lohia, P., Martino, J., Mehta, S., Mojsilovic, A., et al.: AI fairness 360: an extensible toolkit for detecting, understanding, and mitigating unwanted algorithmic bias (2018). arXiv preprint arXiv:1810.01943

  3. Berk, R., Heidari, H., Jabbari, S., Joseph, M., Kearns, M., Morgenstern, J., Neel, S., Roth, A.: A convex framework for fair regression (2017). arXiv preprint arXiv:1706.02409

  4. Black, E., Yeom, S., Fredrikson, M.: Fliptest: fairness testing via optimal transport. In: Proceedings of the 2020 Conference on Fairness, Accountability, and Transparency, pp. 111–121 (2020)

    Google Scholar 

  5. Calders, T., Verwer, S.: Three Naive Bayes approaches for discrimination-free classification. Data Min. Knowl. Discov. 21(2), 277–292 (2010)

    Article  MathSciNet  Google Scholar 

  6. Chakraborty, J., Majumder, S., Yu, Z., Menzies, T.: Fairway: a way to build fair ML software. In: Devanbu, P., Cohen, M.B., Zimmermann, T. (eds.) ESEC/FSE’20: 28th ACM Joint European Software Engineering Conference and Symposium on the Foundations of Software Engineering, 2020, pp. 654–665. ACM (2020). https://doi.org/10.1145/3368089.3409697

  7. Dastin, J.: Amazon scraps secret AI recruiting tool that showed bias against women (2018). https://www.reuters.com/article/us-amazon-com-jobs-automation-insight-idUSKCN1MK08G. Accessed: 24 Feb 2021

  8. Dua, D., Graff, C.: UCI machine learning repository (2017). http://archive.ics.uci.edu/ml

  9. Ferral, K.: Wisconsin supreme court allows state to continue using computer program to assist in sentencing (2016). https://madison.com/ct/news/local/govt-and-politics/wisconsin-supreme-court-allows-state-to-continue-using-computer-program/article_7eb67874-bf40-59e3-b62a-923d1626fa0f.html. Accessed: 31 Mar 2021

  10. Galhotra, S., Brun, Y., Meliou, A.: Fairness testing: testing software for discrimination. In: Proceedings of the 2017 11th Joint Meeting on Foundations of Software Engineering, pp. 498–510 (2017)

    Google Scholar 

  11. Goodall, N.J.: Can you program ethics into a self-driving car? IEEE Spectr. 53(6), 28–58 (2016)

    Article  Google Scholar 

  12. Hardt, M., Price, E., Srebro, N.: Equality of opportunity in supervised learning (2016). arXiv preprint arXiv:1610.02413

  13. Angwin, J., Larson, J., Mattu, S., Kirchner, L.: Machine bias: there’s software used across the country to predict future criminals and it’s biased against blacks (2016). https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing. Accessed: 24 Feb 2021

  14. Kamiran, F., Calders, T.: Classifying without discriminating. In: 2009 2nd International Conference on Computer, Control and Communication, pp. 1–6. IEEE (2009)

    Google Scholar 

  15. Kamiran, F., Calders, T., Pechenizkiy, M.: Discrimination aware decision tree learning. In: 2010 IEEE International Conference on Data Mining, pp. 869–874. IEEE (2010)

    Google Scholar 

  16. Kamishima, T., Akaho, S., Asoh, H., Sakuma, J.: Fairness-aware classifier with prejudice remover regularizer. In: Joint European Conference on Machine Learning and Knowledge Discovery in Databases, pp. 35–50. Springer, Berlin (2012)

    Google Scholar 

  17. Kuhn, R.: Automated combinatorial testing for software (2016). https://csrc.nist.gov/projects/automated-combinatorial-testing-for-software. Accessed: 24 Feb 2021

  18. Kuhn, R., Kacker, R.: Introduction to Combinatorial Testing. Chapman & HallCRC (2013)

    Google Scholar 

  19. Ma, L., Juefei-Xu, F., Xue, M., Li, B., Li, L., Liu, Y., Zhao, J.: DeepCT: tomographic combinatorial testing for deep learning systems. In: Wang, X., Lo, D., Shihab, E. (eds.) 26th IEEE International Conference on Software Analysis, Evolution and Reengineering, SANER 2019, pp. 614–618. IEEE (2019). https://doi.org/10.1109/SANER.2019.8668044

  20. Mattioli, D.: On Orbitz, mac users steered to pricier hotels (2012). https://www.wsj.com/articles/SB10001424052702304458604577488822667325882. Accessed: 31 Mar 2021

  21. Microsoft: Pairwise testing in the real world: practical extensions to test-case scenario (2009). https://docs.microsoft.com/en-us/previous-versions/software-testing/cc150619(v=msdn.10)?redirectedfrom=MSDN. Accessed: 12 Mar 2021

  22. Olson, P.: The algorithm that beats your bank manager (2011). https://www.forbes.com/sites/parmyolson/2011/03/15/the-algorithm-that-beats-your-bank-manager/?sh=191507761ae9. Accessed: 31 Mar 2021

  23. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

    MathSciNet  MATH  Google Scholar 

  24. Pleiss, G., Raghavan, M., Wu, F., Kleinberg, J., Weinberger, K.Q.: On fairness and calibration (2017). arXiv preprint arXiv:1709.02012

  25. Strickland, E.: Doc bot preps for the OR. IEEE Spectr. 53(6), 32–60 (2016)

    Article  Google Scholar 

  26. Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Erhan, D., Goodfellow, I., Fergus, R.: Intriguing properties of neural networks (2013). arXiv preprint arXiv:1312.6199

  27. Udeshi, S., Arora, P., Chattopadhyay, S.: Automated directed fairness testing. In: Proceedings of the 33rd ACM/IEEE International Conference on Automated Software Engineering, pp. 98–108 (2018)

    Google Scholar 

  28. Wu, H., Nie, C., Petke, J., Jia, Y., Harman, M.: An empirical comparison of combinatorial testing, random testing and adaptive random testing. IEEE Trans. Software Eng. 46(3), 302–320 (2020)

    Article  Google Scholar 

  29. Yamada, A., Kitamura, T., Artho, C., Choi, E.H., Oiwa, Y., Biere, A.: Optimization of combinatorial testing by incremental sat solving. In: 2015 IEEE 8th International Conference on Software Testing, Verification and Validation (ICST), pp. 1–10. IEEE (2015)

    Google Scholar 

  30. Zafar, M.B., Valera, I., Rogriguez, M.G., Gummadi, K.P.: Fairness constraints: mechanisms for fair classification. In: Artificial Intelligence and Statistics, pp. 962–970. PMLR (2017)

    Google Scholar 

  31. Žliobaite, I., Kamiran, F., Calders, T.: Handling conditional discrimination. In: 2011 IEEE 11th International Conference on Data Mining, pp. 992–1001. IEEE (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Perez Morales .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Perez Morales, D., Kitamura, T., Takada, S. (2021). Coverage-Guided Fairness Testing. In: Lee, R. (eds) Computer and Information Science 2021—Summer . ICIS 2021. Studies in Computational Intelligence, vol 985. Springer, Cham. https://doi.org/10.1007/978-3-030-79474-3_13

Download citation

Publish with us

Policies and ethics