Skip to main content

Stability and Sensitivity Analysis for Quasi-Variational Inequalities

  • Chapter
  • First Online:
Non-Smooth and Complementarity-Based Distributed Parameter Systems

Abstract

We discuss various aspects of quasi-variational inequalities (QVIs) related to their sensitivity analysis and optimal control. Starting with the necessary functional framework and existence results for elliptic QVIs of obstacle type, we study stability of the solution map taking the source term onto the set of solutions: we show that certain realisations of the map have appropriate continuity properties. We then focus on showing that a notion of directional derivative exists for QVIs and we characterise this derivative as a monotone limit of directional derivatives associated to particular variational inequalities. The differentiability theory is illustrated with a novel application in thermoforming. Using the stability results, we discuss control problems with QVI constraints and prove existence of optimal controls.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 49.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 59.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In particular, if A is linear, this is equivalent to 〈Ay, y+〉≤ 0 for all y ∈ V , and we have the availability of maximum principles for A.

  2. 2.

    In fact, (A1) can be weakened significantly by requiring Hadamard differentiability of Φ only around the point y, i.e., locally, as in assumption (L1).

  3. 3.

    In this case, solutions of the QVI (3.6) are unique [23].

  4. 4.

    Zero Dirichlet conditions arise from clamping the membrane at its ends.

References

  1. Amal Alphonse, Michael Hintermüller, and Carlos N. Rautenberg. Recent trends and views on elliptic quasi-variational inequalities. Preprint SPP1962-071, 9 2018.

    Google Scholar 

  2. Amal Alphonse, Michael Hintermüller, and Carlos N. Rautenberg. Directional differentiability for elliptic quasi-variational inequalities of obstacle type. Calc. Var. Partial Differential Equations, 58(1):Art. 39, 47, 2019.

    Google Scholar 

  3. Amal Alphonse, Michael Hintermüller, and Carlos N. Rautenberg. Existence, iteration procedures and directional differentiability for parabolic QVIs. arXiv e-prints, page arXiv:1904.13230, Apr 2019.

    Google Scholar 

  4. Amal Alphonse, Michael Hintermüller, and Carlos N. Rautenberg. Stability of the solution set of quasi-variational inequalities and optimal control. Preprint SPP1962-107, 3 2019.

    Google Scholar 

  5. H Andrä, M. K. Warby, and J. R. Whiteman. Contact problems of hyperelastic membranes: Existence theory. Mathematical Methods in the Applied Sciences, 23:865–895, 2000.

    Google Scholar 

  6. Hédy Attouch and Roger J-B Wets. Quantitative stability of variational systems ii. A framework for nonlinear conditioning. SIAM Journal on Optimization, 3(2):359–381, 1993.

    Google Scholar 

  7. Jean-Pierre Aubin. Mathematical methods of game and economic theory, volume 7 of Studies in Mathematics and its Applications. North-Holland Publishing Co., Amsterdam-New York, 1979.

    Google Scholar 

  8. John W. Barrett and Leonid Prigozhin. A quasi-variational inequality problem in superconductivity. Math. Models Methods Appl. Sci., 20(5):679–706, 2010.

    Article  MathSciNet  Google Scholar 

  9. John W. Barrett and Leonid Prigozhin. A quasi-variational inequality problem arising in the modeling of growing sandpiles. ESAIM Math. Model. Numer. Anal., 47(4):1133–1165, 2013.

    Article  MathSciNet  Google Scholar 

  10. John W. Barrett and Leonid Prigozhin. Lakes and rivers in the landscape: a quasi-variational inequality approach. Interfaces Free Bound., 16(2):269–296, 2014.

    Article  MathSciNet  Google Scholar 

  11. Alain Bensoussan, Maurice Goursat, and Jacques-Louis Lions. Contrôle impulsionnel et inéquations quasi-variationnelles stationnaires. C. R. Acad. Sci. Paris Sér. A-B, 276:A1279–A1284, 1973.

    MATH  Google Scholar 

  12. Constantin Christof. Sensitivity analysis and optimal control of obstacle-type evolution variational inequalities. SIAM J. Control Optim., 57(1):192–218, 2019.

    Article  MathSciNet  Google Scholar 

  13. Francisco Facchinei and Christian Kanzow. Generalized Nash equilibrium problems. 4OR, 5(3):173–210, Sep 2007.

    Article  MathSciNet  Google Scholar 

  14. Masatoshi Fukushima, Yoichi Oshima, and Masayoshi Takeda. Dirichlet forms and symmetric Markov processes, volume 19 of De Gruyter Studies in Mathematics. Walter de Gruyter & Co., Berlin, extended edition, 2011.

    Google Scholar 

  15. A. Gaevskaya, M. Hintermüller, R. H. W. Hoppe, and C. Löbhard. Adaptive finite elements for optimally controlled elliptic variational inequalities of obstacle type. In Optimization with PDE constraints, volume 101 of Lect. Notes Comput. Sci. Eng., pages 95–150. Springer, Cham, 2014.

    MATH  Google Scholar 

  16. Alexandra Gaevskaya. Adaptive finite elements for optimally controlled elliptic variational inequalities of obstacle type. PhD Thesis, Universität Augsburg, 2013.

    Google Scholar 

  17. A Haraux. How to differentiate the projection on a convex set in Hilbert space. Some applications to variational inequalities. J. Math. Soc. Japan, 29(4):615–631, 1977.

    Google Scholar 

  18. Felix Harder and Gerd Wachsmuth. Comparison of optimality systems for the optimal control of the obstacle problem. GAMM-Mitt., 40(4):312–338, 2018.

    Article  MathSciNet  Google Scholar 

  19. Patrick T. Harker. Generalized Nash games and quasi-variational inequalities. European Journal of Operational Research, 54(1):81–94, 1991.

    Article  Google Scholar 

  20. K. Ito and K. Kunisch. Lagrange Multiplier Approach to Variational Problems and Applications. SIAM, 2008.

    Book  Google Scholar 

  21. W.-G. Jiang, M. K. Warby, J. R. Whiteman, S. Abbot, W. Shorter, P Warwick, T. Wright, A. Munro, and B. Munro. Finite element modelling of high air pressure forming processes for polymer sheets. Computational Mechanics, 31:163–172, 2001.

    Google Scholar 

  22. M. Kunze and J. F. Rodrigues. An elliptic quasi-variational inequality with gradient constraints and some of its applications. Math. Methods Appl. Sci., 23(10):897–908, 2000.

    Article  MathSciNet  Google Scholar 

  23. T. H. Laetsch. A uniqueness theorem for elliptic q. v. i. J. Functional Analysis, 18:286–288, 1975.

    Google Scholar 

  24. J. K. Lee, T. L Virkler, and C. E. Scott. Effects of rheological properties and processing parameters on abs thermoforming. Polymer Engineering and Science, 41(2):240–261, 2001.

    Google Scholar 

  25. J.-L. Lions. Sur le côntrole optimal des systemes distribuées. Enseigne, 19:125–166, 1973.

    MATH  Google Scholar 

  26. J.-P. Lions and G. Stampacchia. Variational inequalities. Commun. Pure Appl. Math., 20:493–519, 1967.

    Article  Google Scholar 

  27. F. Mignot. Contrôle dans les inéquations variationelles elliptiques. J. Functional Analysis, 22(2):130–185, 1976.

    Article  MathSciNet  Google Scholar 

  28. F. Mignot and J. P. Puel. Inéquations variationelles et quasi variationelles hyperboliques du premier ordre. J. Math Pures Appl., 55:353–378, 1976.

    MathSciNet  MATH  Google Scholar 

  29. G. J. Nam, K. H. Ahn, and J. W. Lee. Three-dimensional simulation of thermoforming process and its comparison with experiments. Polymer Engineering and Science, 40(10):2232–2240, 2000.

    Article  Google Scholar 

  30. J. Outrata, M. Kocvara, and J. Zowe. Nonsmooth Approach to Optimization Problems with Equilibrium Constraints. Kluwer Academic Publishers, 1998.

    Book  Google Scholar 

  31. Jong-Shi Pang and Masao Fukushima. Quasi-variational inequalities, generalized Nash equilibria, and multi-leader-follower games. Computational Management Science, 2(1):21–56, Jan 2005.

    Article  MathSciNet  Google Scholar 

  32. Jean-Paul Penot. Calculus without derivatives, volume 266 of Graduate Texts in Mathematics. Springer, New York, 2013.

    Book  Google Scholar 

  33. L. Prigozhin. Sandpiles and river networks: extended systems with non-local interactions. Phys. Rev. E, 49:1161–1167, 1994.

    Article  MathSciNet  Google Scholar 

  34. L. Prigozhin. On the Bean critical-state model in superconductivity. European Journal of Applied Mathematics, 7:237–247, 1996.

    Article  MathSciNet  Google Scholar 

  35. L. Prigozhin. Sandpiles, river networks, and type-ii superconductors. Free Boundary Problems News, 10:2–4, 1996.

    Google Scholar 

  36. Leonid Prigozhin. Variational model of sandpile growth. European J. Appl. Math., 7(3):225–235, 1996.

    Article  MathSciNet  Google Scholar 

  37. José Francisco Rodrigues and Lisa Santos. A parabolic quasi-variational inequality arising in a superconductivity model. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 29(1):153–169, 2000.

    Google Scholar 

  38. Luc Tartar. Inéquations quasi variationnelles abstraites. CR Acad. Sci. Paris Sér. A, 278:1193–1196, 1974.

    MathSciNet  MATH  Google Scholar 

  39. Gerd Wachsmuth. Strong stationarity for optimal control of the obstacle problem with control constraints. SIAM Journal on Optimization, 24(4):1914–1932, 2014.

    Article  MathSciNet  Google Scholar 

  40. M. K. Warby, J. R. Whiteman, W.-G. Jiang, P Warwick, and Wright T. Finite element simulation of thermoforming processes for polymer sheets. Mathematics and Computers in Simulation, 61:209–218, 2003.

    Google Scholar 

  41. Eduardo H Zarantonello. Projections on Convex Sets in Hilbert Space and Spectral Theory. Contributions to Nonlinear Functional Analysis, pages 237–424, 1971.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Hintermüller .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Alphonse, A., Hintermüller, M., Rautenberg, C.N. (2022). Stability and Sensitivity Analysis for Quasi-Variational Inequalities. In: Hintermüller, M., Herzog, R., Kanzow, C., Ulbrich, M., Ulbrich, S. (eds) Non-Smooth and Complementarity-Based Distributed Parameter Systems. International Series of Numerical Mathematics, vol 172. Birkhäuser, Cham. https://doi.org/10.1007/978-3-030-79393-7_8

Download citation

Publish with us

Policies and ethics