Skip to main content

Rate-Independent Systems and Their Viscous Regularizations: Analysis, Simulation, and Optimal Control

  • Chapter
  • First Online:
Non-Smooth and Complementarity-Based Distributed Parameter Systems

Abstract

This chapter provides a survey on the analysis, simulation, and optimal control of a class of non-smooth evolution systems that appears in the modeling of dissipative solids. Our focus is on models that include internal constraints, such as a flow rule in plasticity, and that account for the temperature dependence of the respective materials. We discuss here two cases, namely purely rate-independent models and viscously regularized models coupled to the temperature equation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 49.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 59.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jochen Alberty and Carsten Carstensen. “Numerical Analysis of Time-Depending Primal Elastoplasticity with Hardening”. In: SIAM Journal on Numerical Analysis 37.4 (2000), pp. 1271–1294.

    Google Scholar 

  2. Luigi Ambrosio, Nicola Gigli, and Giuseppe Savaré. Gradient flows in metric spaces and in the space of probability measures. Lectures in Mathematics ETH Zürich. Birkhäuser Verlag, Basel, 2005.

    Google Scholar 

  3. Marco Artina, Filippo Cagnetti, Massimo Fornasier, and Francesco Solombrino. “Linearly constrained evolutions of critical points and an application to cohesive fractures.” In: Math. Models Methods Appl. Sci. 27.2 (2017), pp. 231–290. https://doi.org/10.1142/S0218202517500014.

  4. Sören Bartels. “Quasi-optimal Error Estimates for Implicit Discretizations of Rate-Independent Evolutions”. In: SIAM Journal on Numerical Analysis 52.2 (2014), pp. 708–716.

    Google Scholar 

  5. Herbert F. Bahls and Hans-Thomas Bolms. “Turbinenbeschaufelung”. In: Stationäre Gasturbinen. Heidelberg: Springer, 2010, pp. 567–594.

    Chapter  Google Scholar 

  6. Haïm Brézis. Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert. North-Holland Publishing Co., 1973.

    MATH  Google Scholar 

  7. Zdeněk P. Bažant and Yong Zhou. “Why Did the World Trade Center Collapse? – Simple Analysis”. In: Journal of Engineering Mechanics 128.1 (2002), pp. 2–6.

    Google Scholar 

  8. Gianni Dal Maso, Antonio DeSimone, Maria Giovanna Mora, and Massimiliano Morini. “A vanishing viscosity approach to quasistatic evolution in plasticity with softening”. In: Archive for Rational Mechanics and Analysis 189.3 (2008), pp. 469–544. https://doi.org/10.1007/s00205-008-0117-5.

  9. Michela Eleuteri and Luca Lussardi. “Thermal control of a rate-independent model for permanent inelastic effects in shape memory materials”. In: Evol. Equ. Control Theory 3.3 (2014), pp. 411–427. https://doi.org/10.3934/eect.2014.3.411.

  10. Michela Eleuteri, Luca Lussardi, and Ulisse Stefanelli. “Thermal control of the Souza-Auricchio model for shape memory alloys”. In: Discrete Contin. Dyn. Syst. Ser. S 6.2 (2013), pp. 369–386. https://doi.org/10.3934/dcdss.2013.6.369.

  11. Messoud A. Efendiev and Alexander Mielke. “On the rate-independent limit of systems with dry friction and small viscosity”. In: Journal of Convex Analysis 13.1 (2006), pp. 151–167.

    Google Scholar 

  12. Alessandro Giacomini. “Ambrosio-Tortorelli approximation of quasistatic evolution of brittle fractures”. In: Calculus of Variations and Partial Differential Equations 22.2 (2005), pp. 129–172. https://doi.org/10.1007/s00526-004-0269-6.

  13. Roland Herzog, Christian Meyer, and Ailyn Stötzner. “Existence of solutions of a thermoviscoplastic model and associated optimal control problems”. In: Nonlinear Analysis: Real World Applications 35 (2017), pp. 75–101. https://doi.org/10.1016/j.nonrwa.2016.10.008.

  14. Weimin Han and B. Daya Reddy. Plasticity. Second. Vol. 9. Interdisciplinary Applied Mathematics. Mathematical theory and numerical analysis. Springer, New York, 2013, pp. xvi+ 421. https://doi.org/10.1007/978-1-4614-5940-8.

  15. Roland Herzog and Ailyn Stötzner. “Hadamard Differentiability of the Solution Map in Thermoviscoplasticity”. In: Pure and Applied Functional Analysis 4.2 (2019), pp. 271–295.

    Google Scholar 

  16. Bernard Halphen and Nguyen Quoc Son. “Sur les matériaux standards généralisés”. In: Journal de Mécanique Théorique et Appliquée. Journal of Theoretical and Applied Mechanics 14 (1975), pp. 39–63.

    Google Scholar 

  17. Claes Johnson. “On Plasticity with Hardening”. In: Journal of Mathematical Analysis and Applications 62.2 (1978), pp. 325–336. https://doi.org/10.1016/0022-247X(78)90129-4.

  18. Dorothee Knees and Matteo Negri. “Convergence of alternate minimization schemes for phase-field fracture and damage.” In: Math. Models Methods Appl. Sci. 27.9 (2017), pp. 1743–1794. https://doi.org/10.1142/S0218202517500312.

  19. Dorothee Knees. “Convergence analysis of time-discretisation schemes for rate-independent systems”. In: ESAIM, Control Optim. Calc. Var. 25 (2019). https://doi.org/10.1051/cocv/2018048.

  20. Dorothee Knees, Riccarda Rossi, and Chiara Zanini. “Balanced viscosity solutions to a rate-independent system for damage”. In: European Journal of Applied Mathematics 30.1 (2019), pp. 117–175. https://doi.org/10.1017/S0956792517000407.

  21. Dorothee Knees and Andreas Schröder. “Computational aspects of quasi-static crack propagation”. In: Discrete and Continuous Dynamical Systems. Series S 6.1 (2013), pp. 63–99. https://doi.org/10.3934/dcdss.2013.6.63.

  22. Dorothee Knees and Stephanie Thomas. Optimal control for rate independent systems constrained to BV solutions. Tech. rep. arXiv:1810.12572. University of Kassel, 2018.

    Google Scholar 

  23. Dorothee Knees, Chiara Zanini, and Alexander Mielke. “Crack growth in polyconvex materials”. In: Physica D. Nonlinear Phenomena 239.15 (2010), pp. 1470–1484. https://doi.org/10.1016/j.physd.2009.02.008.

  24. Christopher J. Larsen. “Epsilon-stable quasi-static brittle fracture evolution.” In: Commun. Pure Appl. Math. 63.5 (2010), pp. 630–654. https://doi.org/10.1002/cpa.20300.

  25. Alexander Mielke, Laetitia Paoli, Adrien Petrov, and Ulisse Stefanelli. “Error estimates for space-time discretizations of a rate-independent variational inequality”. In: SIAM Journal on Numerical Analysis 48.5 (2010), pp. 1625–1646.

    Google Scholar 

  26. Alexander Mielke. “Chapter 6 Evolution of Rate-Independent Systems”. In: Handbook of Differential Equations, Evolutionary Equations 2 (Dec. 2006).

    Google Scholar 

  27. Andreas Mainik and Alexander Mielke. “Global existence for rate-independent gradient plasticity at finite strain.” In: J. Nonlinear Sci. 19.3 (2009), pp. 221–248. https://doi.org/10.1007/s00332-008-9033-y.

  28. Ekkehard Maldfeld and Michael Müller. “Statische und dynamische Auslegung des Turbinenläufers”. In: Stationäre Gasturbinen. Heidelberg: Springer, 2010, pp. 649–682.

    Chapter  Google Scholar 

  29. Alexander Mielke and Tomäš Roubíček. Rate-independent systems. Theory and application. Vol. 193. New York, NY: Springer, 2015. https://doi.org/10.1007/978-1-4939-2706-7.

    Book  Google Scholar 

  30. Alexander Mielke, Tomäš Roubíček, and Ulisse Stefanelli. “Γ-limits and relaxations for rate-independent evolutionary problems.” In: Calc. Var. Partial Differ. Equ. 31.3 (2008), pp. 387–416. https://doi.org/10.1007/s00526-007-0119-4.

  31. Alexander Mielke, Riccarda Rossi, and Giuseppe Savaré. “BV solutions and viscosity approximations of rate-independent systems”. In: ESAIM. Control, Optimisation and Calculus of Variations 18.1 (2012), pp. 36–80. https://doi.org/10.1051/cocv/2010054.

  32. Alexander Mielke, Riccarda Rossi, and Giuseppe Savaré. “Balanced viscosity (BV) solutions to infinite-dimensional rate-independent systems.” In: J. Eur. Math. Soc. (JEMS) 18.9 (2016), pp. 2107–2165. https://doi.org/10.4171/JEMS/639.

  33. Luca Minotti and Giuseppe Savaré. “Viscous corrections of the time incremental minimization scheme and visco-energetic solutions to rate-independent evolution problems.” In: Arch. Ration. Mech. Anal. 227.2 (2018), pp. 477–543. https://doi.org/10.1007/s00205-017-1165-5.

  34. Christian Meyer and Michael Sievers. A-priori error analysis of local incremental minimization schemes for rate-independent evolutions. Tech. rep. SPP1962-115. 2019.

    Google Scholar 

  35. Christian Meyer and Michael Sievers. “Finite element discretization of local minimization schemes for rate-independent evolutions”. In: Calcolo. A Quarterly on Numerical Analysis and Theory of Computation 56.1 (2019), Art. 6, 38. https://doi.org/10.1007/s10092-018-0301-4.

  36. Alexander Mielke and Florian Theil. “On rate-independent hysteresis models”. In: NoDEA: Nonlinear Differential Equations and Applications 11.2 (2004), pp. 151–189.

    Google Scholar 

  37. Alexander Mielke, Florian Theil, and Valery I. Levitas. “A variational formulation of rate-independent phase transformations using an extremum principle”. In: Archive for Rational Mechanics and Analysis 162.2 (2002), pp. 137–177. https://doi.org/10.1007/s002050200194.

  38. Alexander Mielke and Sergey Zelik. “On the vanishing-viscosity limit in parabolic systems with rate-independent dissipation terms”. In: Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 13.1 (2014), pp. 67–135.

    Google Scholar 

  39. Niels S. Ottosen and Matti Ristinmaa. The Mechanics of Constitutive Modeling. Elsevier, 2005.

    Google Scholar 

  40. David Preiss. “Differentiability of Lipschitz functions on Banach spaces”. In: Journal of Functional Analysis 91.2 (1990), pp. 312–345. https://doi.org/10.1016/0022-1236(90)90147-D.

  41. Filip Rindler. “Optimal control for nonconvex rate-independent evolution processes”. In: SIAM J. Control Optim. 47.6 (2008), pp. 2773– 2794. https://doi.org/10.1137/080718711.

  42. Tomäš Roubíček. “Rate-independent processes in viscous solids at small strains.” In: Math. Methods Appl. Sci. 32.7 (2009), pp. 825–862.

    Google Scholar 

  43. Tomäš Roubíček, Marita Thomas, and Christos G. Panagiotopoulos. “Stress-driven local-solution approach to quasistatic brittle delamination”. In: Nonlinear Analysis. Real World Applications. An International Multidisciplinary Journal 22 (2015), pp. 645–663. https://doi.org/10.1016/j.nonrwa.2014.09.011.

  44. Abdullah Aziz Saad. “Cyclic Plasticity and Creep of Power Plant Materials”. PhD thesis. University of Nottingham, UK, 2012.

    Google Scholar 

  45. David Schrade, Marc-André Keip, Huy Ngoc Minh Thai, Jörg Schröder, Bob Svendsen, Ralf Müller, and Dietmar Gross. “Coordinate-invariant phase-field modeling of ferroelectrics, part I: Model formulation and single-crystal simulations”. In: GAMM-Mitt. 38 (2015), pp. 102–114.

    Google Scholar 

  46. Diego Somaini, Markus Knobloch, and Mario Fontana. “Buckling of steel columns in fire: non-linear behaviour and design proposal”. In: Steel Construction - Design and Research 5.3 (2012), pp. 175–182. https://doi.org/10.1002/stco.201210022.

  47. Ulisse Stefanelli. “A variational characterization of rate-independent evolution”. In: Mathematische Nachrichten 282.11 (2009), pp. 1492–1512. https://doi.org/10.1002/mana.200810803.

  48. Ulisse Stefanelli. “Magnetic control of magnetic shape-memory single crystals”. In: Physica B 407 (2012), pp. 1316–1321.

    Google Scholar 

  49. Ailyn Stötzner. “Optimal Control of Thermoviscoplasticity”. PhD thesis. Technische Universität Chemnitz, Germany, 2018. urn: urn:nbn: de:bsz:ch1-qucosa2-318874.

    Google Scholar 

Download references

Acknowledgements

The research of this work was carried out in Project P09 (Optimal Control of Dissipative Solids: Viscosity Limits and Non-Smooth Algorithms) within the DFG Priority Program SPP 1962 (Non-Smooth and Complementarity-Based Distributed Parameter Systems: Simulation and Hierarchical Optimization). The support by the DFG is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dorothee Knees .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Herzog, R., Knees, D., Meyer, C., Sievers, M., Stötzner, A., Thomas, S. (2022). Rate-Independent Systems and Their Viscous Regularizations: Analysis, Simulation, and Optimal Control. In: Hintermüller, M., Herzog, R., Kanzow, C., Ulbrich, M., Ulbrich, S. (eds) Non-Smooth and Complementarity-Based Distributed Parameter Systems. International Series of Numerical Mathematics, vol 172. Birkhäuser, Cham. https://doi.org/10.1007/978-3-030-79393-7_6

Download citation

Publish with us

Policies and ethics