Skip to main content

Strong Stationarity for Optimal Control of Variational Inequalities of the Second Kind

  • Chapter
  • First Online:
Book cover Non-Smooth and Complementarity-Based Distributed Parameter Systems

Part of the book series: International Series of Numerical Mathematics ((ISNM,volume 172))

Abstract

This chapter is concerned with necessary optimality conditions for optimal control problems governed by variational inequalities of the second kind. The so-called strong stationarity conditions are derived in an abstract framework. Strong stationarity conditions are regarded as the most rigorous ones, since they imply all other types of stationarity concepts and are equivalent to purely primal optimality conditions. The abstract framework is afterward applied to four application-driven examples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 49.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 59.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. T. Betz, Optimal control of two variational inequalities arising in solid mechanics. PhD thesis, Technische Universität Dortmund, 2015.

    Google Scholar 

  2. J. F. Bonnans and A. Shapiro, Perturbation Analysis of Optimization Problems. Springer, 2000.

    Book  Google Scholar 

  3. C. Christof, Sensitivity Analysis of Elliptic Variational Inequalities of the First and the Second Kind. PhD thesis, Technische Universität Dortmund, 2018.

    Google Scholar 

  4. C. Christof, C. Clason, C. Meyer, and S. Walther, Optimal control of a non-smooth semilinear elliptic equation. Math. Control and Related Fields 8 (2018), 247–276.

    Article  MathSciNet  Google Scholar 

  5. C. Christof and C. Meyer, Sensitivity analysis for a class of \(H^1_0\) -elliptic variational inequalities of the second kind. Set-Valued and Variational Analysis 27 (2019), 469–502.

    Article  MathSciNet  Google Scholar 

  6. C. Christof and G. Wachsmuth, On the Non-Polyhedricity of Sets with Upper and Lower Bounds in Dual Spaces. GAMM Reports 40 (2018), 339–350.

    Article  MathSciNet  Google Scholar 

  7. J. C. de los Reyes, Optimization of mixed variational inequalities arising in flow of viscoplastic materials. COAP 52 (2012), 757–784.

    Google Scholar 

  8. J. C. de los Reyes, On the optimal control of some nonsmooth distributed parameter systems arising in mechanics. GAMM Reports 40 (2017), 268–286.

    Google Scholar 

  9. J. C. de los Reyes and C. Meyer, Strong stationarity conditions for a class of optimization problems governed by variational inequalities of the second kind. J. Optim. Theory Appl. 168 (2016), 375–409.

    Google Scholar 

  10. L. C. Evans and R. F. Gariepy, Measure Theory and Fine Properties of Functions. CRC Press, 2015.

    Book  Google Scholar 

  11. W. Han and B. D. Reddy, Plasticity: Mathematical Theory and Numerical Analysis. Springer, 1999.

    MATH  Google Scholar 

  12. A. Haraux, How to differentiate the projection on a convex set in Hilbert space. Some applications to variational inequalities. J. Math. Soc. Japan 29 (1977), 615–631.

    Article  MathSciNet  Google Scholar 

  13. R. Herzog and C. Meyer, Optimal control of static plasticity with linear kinematic hardening. ZAMM 91 (2011), 777–794.

    Article  MathSciNet  Google Scholar 

  14. R. Herzog, C. Meyer and G. Wachsmuth, B- and strong stationarity for optimal control of static plasticity with hardening. SIAM J. Optim. 23 (2013), 321–352.

    Article  MathSciNet  Google Scholar 

  15. M. Hintermüller and I. Kopacka, Mathematical programs with complementarity constraints in function space: C- and strong stationarity and a path-following algorithm. SIAM Journal on Optimization 20 (2009), 86–902.

    Article  MathSciNet  Google Scholar 

  16. M. Hintermüller and T. Surowiec, First-Order Optimality Conditions for Elliptic Mathematical Programs with Equilibrium Constraints via Variational Analysis. SIAM Journal on Optimization 21 (2011), 1561–1593.

    Article  MathSciNet  Google Scholar 

  17. M. Hintermüller and T. Surowiec, On the Directional Differentiability of the Solution Mapping for a Class of Variational Inequalities of the Second Kind. Set-Valued and Variational Analysis 26 (2018), 631–642.

    Article  MathSciNet  Google Scholar 

  18. C. Meyer and D. Wachsmuth, Strong stationarity is not a necessary optimality condition for boundary control of the obstacle problem. Preprint Nr. 327, Ergebnisberichte des Instituts für Angewandte Mathematik, Universität Würzburg, 2014.

    Google Scholar 

  19. F. Mignot, Contrôle dans les inéquations variationelles elliptiques. J. Funct. Anal. 22 (1976), 130–185.

    Article  Google Scholar 

  20. F. Mignot and J. P. Puel, Optimal control in some variational inequalities. SIAM J. Control Optim. 22 (1984), 466–476.

    Article  MathSciNet  Google Scholar 

  21. P. P. Mosolov and V. P. Miasnikov, Variational methods in the theory of the fluidity of a viscousplastic medium. J. Appl. Math. Mech. 29 (1965), 545–577.

    Article  Google Scholar 

  22. B. Schweizer, Partielle Differentialgleichungen. Springer, 2013.

    Book  Google Scholar 

  23. J. Sokołowski, Sensitivity analysis of contact problems with prescribed friction. Appl. Math. Optim. 18 (1988), 99–117.

    Article  MathSciNet  Google Scholar 

  24. R. Tibshirani, Regression Analysis and Selection via the Lasso. Royal Statistical Society Series 58 (1996) 267–288.

    MathSciNet  MATH  Google Scholar 

  25. G. Wachsmuth, Strong Stationarity for Optimal Control of the Obstacle Problem with Control Constraints. SIAM Journal on Optimization 24 (2014), 1914–1932.

    Article  MathSciNet  Google Scholar 

  26. G. Wachsmuth, Mathematical Programs with Complementarity Constraints in Banach Spaces. Journal of Optimization Theory and Applications 166 (2015), 480–507.

    Article  MathSciNet  Google Scholar 

  27. G. Wachsmuth, Strong stationarity for optimization problems with complementarity constraints in absence of polyhedricity. Set-Valued Var. Anal. 25 (2017), 133–175.

    Article  MathSciNet  Google Scholar 

  28. G. Wachsmuth, A guided tour of polyhedric sets. Journal of Convex Analysis 26 (2019), 153–188.

    MathSciNet  MATH  Google Scholar 

  29. I. Yousept, Hyperbolic Maxwell variational inequalities for Bean’s critical-state model in type-II superconductivity. SIAM J. Numer. Anal. 55 (2017), 2444–2464.

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The research of this work was carried out in Project P16 (Optimal Control of Variational Inequalities of the Second Kind with Application to Yield Stress Fluids) within the DFG Priority Program SPP 1962 (Non-smooth and Complementarity-Based Distributed Parameter Systems: Simulation and Hierarchical Optimization). The support by the DFG is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Meyer .

Editor information

Editors and Affiliations

Appendix A: Auxiliary Results

Appendix A: Auxiliary Results

Lemma A.1

Under Assumption 2.3 , U is dense in .

Proof

Let us assume that U is not a dense subset of so that there exists a . Then, the strict separation theorem in combination with the reflexivity of implies the existence of a , v ≠ 0, such that

Since and the embedding is injective, this yields v = 0, which is a contradiction. □

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Christof, C., Meyer, C., Schweizer, B., Turek, S. (2022). Strong Stationarity for Optimal Control of Variational Inequalities of the Second Kind. In: Hintermüller, M., Herzog, R., Kanzow, C., Ulbrich, M., Ulbrich, S. (eds) Non-Smooth and Complementarity-Based Distributed Parameter Systems. International Series of Numerical Mathematics, vol 172. Birkhäuser, Cham. https://doi.org/10.1007/978-3-030-79393-7_12

Download citation

Publish with us

Policies and ethics