Abstract
Business process management encompasses a variety of tasks that can be solved system-aided but usually require formal process representations, i.e. process models. However, it requires a significant effort to learn a formal process modeling language like, for instance, BPMN. Among others, this is one reason why companies often still stick to informal textual process descriptions. However, in contrast to formal models, information from natural language text usually cannot be automatically processed by algorithms. Hence, recent research also focuses on annotated textual process descriptions to make text machine processable.
While still human-readable, they additionally contain annotations following a formal scheme. Thus, they also enable automated processing by, for instance, formal reasoning and simulation. State-of-the-art techniques for automatically annotating textual process descriptions are either based on hand-crafted rule sets or artificial neural networks. Maintaining complex rule sets requires a significant manual effort and the approaches using neural networks suffer from rather low result quality. In this paper we present an approach based on Semantic Parsing and Graph Convolutional Networks that avoids manually defined rules and provides significantly better results than existing techniques based on neural networks. A comprehensive evaluation using multiple data sets from both academia and industry shows encouraging results and differentiates between several applied text features.
Keywords
- Process modeling
- Text annotation
- Semantic parsing
- Graph convolutional networks
This is a preview of subscription content, access via your institution.
Buying options






Notes
- 1.
Literature refers to Clause Classification and Clause Semantics Recognition as Sentence Classification and Sentence Semantics Recognition, which suggests processing of whole sentences, though the discussed approach operates on clauses instead.
- 2.
Our code can be accessed at https://github.com/JulianNeuberger/UCCA4BPM.
- 3.
see https://universaldependencies.org/u/pos/, accessed 2020/12/5.
- 4.
Using token based node features, inner nodes use the zero vector as feature, since they do not have a corresponding token. Therefore, two edges need to be traversed before the incoming edge information is aggregated in a terminal node: The artificial inverse edge “up” the UCCA structure and only then the edge in question, see Sect. 4.
- 5.
https://universaldependencies.org/u/feat/index.html, accessed 2020/12/5.
References
van der Aa, H., Carmona, J., Leopold, H., Mendling, J., Padró, L.: Challenges and opportunities of applying natural language processing in business process management. In: Proceedings of COLING. ACL (2018)
van der Aa, H., Di Ciccio, C., Leopold, H., Reijers, H.A.: Extracting declarative process models from natural language. In: Giorgini, P., Weber, B. (eds.) CAiSE 2019. LNCS, vol. 11483, pp. 365–382. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-21290-2_23
van der Aa, H., Leopold, H., Reijers, H.A.: Detecting inconsistencies between process models and textual descriptions. In: Motahari-Nezhad, H.R., Recker, J., Weidlich, M. (eds.) BPM 2015. LNCS, vol. 9253, pp. 90–105. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23063-4_6
Aalst, W.: Data science in action. Process Mining, pp. 3–23. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49851-4_1
Abadi, M., et al.: Tensorflow: a system for large-scale machine learning. In: Proceedings of OSDI (2016)
Abend, O., Rappoport, A.: Universal conceptual cognitive annotation (UCCA). In: Proceedings of the ACL. ACL (2013)
Abend, O., Rappoport, A.: The state of the art in semantic representation. In: Proceedings of the ACL. ACL (2017)
Allen-Zhu, Z., Li, Y., Liang, Y.: Learning and generalization in overparameterized neural networks, going beyond two layers. In: Proceedings of NeurIPS (2019)
Btoush, E.S., Hammad, M.M.: Generating ER diagrams from requirement specifications based on natural language processing. In: IJDTA (2015)
Che, W., Dou, L., Xu, Y., Wang, Y., Liu, Y., Liu, T.: HIT-SCIR at MRP 2019: a unified pipeline for meaning representation parsing via efficient training and effective encoding. In: Proceedings of the Shared Task on Cross-Framework Meaning Representation Parsing at the 2019 CoNLL (2019)
Chinchor, N., Sundheim, B.: Muc-5 evaluation metrics. In: Proceedings of MUC. ACL (1993)
Dawood, O.S., et al.: From requirements engineering to UML using natural language processing-survey study. In: EJERS (2017)
Fellbaum, C. (ed.): WordNet: An Electronic Lexical Database. Language, Speech, and Communication. MIT Press (1998)
Figl, K., Recker, J.: Exploring cognitive style and task-specific preferences for process representations. Requirements Eng. 21(1), 63–85 (2014). https://doi.org/10.1007/s00766-014-0210-2
Friedrich, F., Mendling, J., Puhlmann, F.: Process model generation from natural language text. In: Mouratidis, H., Rolland, C. (eds.) CAiSE 2011. LNCS, vol. 6741, pp. 482–496. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21640-4_36
Hershcovich, D., Abend, O., Rappoport, A.: A transition-based directed acyclic graph parser for UCCA. In: Proceedings of the ACL. ACL (2017)
Jia, R., Liang, P.: Data recombination for neural semantic parsing. In: Proceedings of ACL. ACL (2016)
Jlailaty, D., Grigori, D., Belhajjame, K.: Email business activities extraction and annotation. In: Kotzinos, D., Laurent, D., Spyratos, N., Tanaka, Y., Taniguchi, R. (eds.) ISIP 2018. CCIS, vol. 1040, pp. 69–86. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-30284-9_5
Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: ICLR (2015)
Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of ICLR (2017)
Körner, S.J., Landhäußer, M.: Semantic enriching of natural language texts with automatic thematic role annotation. In: Hopfe, C.J., Rezgui, Y., Métais, E., Preece, A., Li, H. (eds.) NLDB 2010. LNCS, vol. 6177, pp. 92–99. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13881-2_9
Leopold, H., van der Aa, H., Reijers, H.A.: Identifying candidate tasks for robotic process automation in textual process descriptions. In: Gulden, J., Reinhartz-Berger, I., Schmidt, R., Guerreiro, S., Guédria, W., Bera, P. (eds.) BPMDS/EMMSAD -2018. LNBIP, vol. 318, pp. 67–81. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-91704-7_5
López, H.A., Debois, S., Hildebrandt, T.T., Marquard, M.: The process highlighter: from texts to declarative processes and back. In: CEUR Workshop Proceedings (2018)
Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word representations in vector space. In: ICLR, Workshop Track Proceedings (2013)
Pennington, J., Socher, R., Manning, C.D.: Glove: global vectors for word representation. In: Proceedings of the Conference on EMNLP (2014)
Qian, C., et al.: An approach for process model extraction by multi-grained text classification. In: Dustdar, S., Yu, E., Salinesi, C., Rieu, D., Pant, V. (eds.) CAiSE 2020. LNCS, vol. 12127, pp. 268–282. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-49435-3_17
Quishpi, L., Carmona, J., Padró, L.: Extracting annotations from textual descriptions of processes. In: Fahland, D., Ghidini, C., Becker, J., Dumas, M. (eds.) BPM 2020. LNCS, vol. 12168, pp. 184–201. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58666-9_11
Schlichtkrull, M., Kipf, T.N., Bloem, P., van den Berg, R., Titov, I., Welling, M.: Modeling relational data with graph convolutional networks. In: Gangemi, A., et al. (eds.) Modeling relational data with graph convolutional networks. In: Proc. of ESWC. Springer (2018). LNCS, vol. 10843, pp. 593–607. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-93417-4_38
Shuman, D.I., Narang, S.K., Frossard, P., Ortega, A., Vandergheynst, P.: The emerging field of signal processing on graphs: extending high-dimensional data analysis to networks and other irregular domains. In: IEEE SPM (2013)
Straka, M., Straková, J.: Tokenizing, POS tagging, lemmatizing and parsing UD 2.0 with UDPipe. In: Proceedings of the CoNLL 2017 Shared Task: Multilingual Parsing from Raw Text to Universal Dependencies (2017)
Sànchez-Ferreres, J., Burattin, A., Carmona, J., Montali, M., Padró, L.: Formal reasoning on natural language descriptions of processes. In: Hildebrandt, T., van Dongen, B.F., Röglinger, M., Mendling, J. (eds.) BPM 2019. LNCS, vol. 11675, pp. 86–101. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26619-6_8
Tsai, R.T.H., et al.: Various criteria in the evaluation of biomedical named entity recognition. BMC Bioinform. 7, 92 (2006)
Wang, M., et al.: Deep graph library: a graph-centric, highly-performant package for graph neural networks. arXiv: Learning (2019)
Wu, Z., Pan, S., Chen, F., Long, G., Zhang, C., Yu, P.S.: A comprehensive survey on graph neural networks. In: IEEE Transactions on NNLS (2020)
Zhang, Z., Sabuncu, M.: Generalized cross entropy loss for training deep neural networks with noisy labels. In: NeurIPS (2018)
Acknowledgements
We thank Omri Abend (HUJI) and Daniel Hershcovich (UCPH) for their assistance with UCCA, Lluís Padró, Luis Quishpi and Josep Carmona (UPC) for valuable advice regarding their approach, and the DBIS Chair (UBT) for assistance creating the new dataset.
Author information
Authors and Affiliations
Corresponding authors
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Ackermann, L., Neuberger, J., Jablonski, S. (2021). Data-Driven Annotation of Textual Process Descriptions Based on Formal Meaning Representations. In: La Rosa, M., Sadiq, S., Teniente, E. (eds) Advanced Information Systems Engineering. CAiSE 2021. Lecture Notes in Computer Science(), vol 12751. Springer, Cham. https://doi.org/10.1007/978-3-030-79382-1_5
Download citation
DOI: https://doi.org/10.1007/978-3-030-79382-1_5
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-79381-4
Online ISBN: 978-3-030-79382-1
eBook Packages: Computer ScienceComputer Science (R0)