Skip to main content

Contamination of Sports Supplements with Novel Psychoactive Substances: An Old History with New Players

  • Chapter
  • First Online:
Emerging Drugs in Sport

Abstract

Dietary supplement use is very popular among athletes, to enhance performance, speed recovery or ease pain. Many of these products contain numerous ingredients that are not prohibited substances in sport, such as amino acids, proteins, creatine and caffeine. However, unscrupulous manufacturers also use these nutritional supplements as cover-ups to sell prohibited substances, such as synthetic psychoactive drugs. These substances are commonly undeclared on the supplements label or identified with names of natural products, pretending to be harmless. The inclusion of novel psychoactive substances (NPS) in supplements is even more problematic because neither the parent compound nor the metabolites are detected in routine drug tests. This chapter describes the historic evolution of the use of dietary supplements containing psychoactive substances (PS) for sports doping and proposes means to curb their availability and consumption.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Karunamoorthi K, Jegajeevanram K, Vijayalakshmi J, Mengistie E (2013) Traditional medicinal plants: a source of Phytotherapeutic modality in resource-constrained health care settings. J Evid Based Compl Altern Med 18:67–74

    Google Scholar 

  2. Fabricant D, Fansworth NR (2001) The value of plants used in traditional medicine for drug discovery. Environ Heath Perspect 109(Suppl 1):69–75

    CAS  Google Scholar 

  3. Falzon C, Balabanova A (2017) Phytotherapy: an introduction to herbal medicine. Prim Care 44:217–227

    PubMed  Google Scholar 

  4. Bamola N, Verma P, Negi C (2018) A review on some traditional medicinal plants. Int J Life Sci Scienti Res 4:1550–1556

    Google Scholar 

  5. Sen T, Samanta SK (2015) Medicinal plants, human health and biodiversity: a broad review. Adv Biochem Eng Biotechnol 147:59–110

    CAS  PubMed  Google Scholar 

  6. Taylor JLS, Rabe T, McGaw LJ, Jäger AK, van Staden J (2001) Towards the scientific validation of traditional medicinal plants. Plant Growth Reg 34:23–47

    CAS  Google Scholar 

  7. Shorter W, Kathryn Segesser K (2013) Traditional Chinese medicine and Western psychopharmacology: building bridges. Phytother Res 27:1739–1744

    PubMed  PubMed Central  Google Scholar 

  8. Campbel R, Young SP (2014) Central nervous system stimulants: basic pharmacology and relevance to anaesthesia and critical care. Anaesth Intensive Care Med 16:21–25

    Google Scholar 

  9. Patocka J (2015) Strychnine. In: Gupta RC (ed) Handbook of toxicology of chemical warfare agents, 2nd edn. Elsevier Inc, Amsterdam, pp 215–222

    Google Scholar 

  10. Henry TA (1949) The plant alkaloids, 4th edn. J & A Churchill

    Google Scholar 

  11. Taylor DA (2003) Central nervous system stimulants. In: IV Drugs affecting the central nervous system

    Google Scholar 

  12. Norn S, Kruse PR (2004) Cardiac glycosides: from ancient history through Withering’s foxglove to endogeneous cardiac glycosides. Dan Medicinhist Arbog:119–132

    Google Scholar 

  13. Stolberg VB (2011) The use of coca: prehistory, history, and ethnography. J Ethnicity Subs Abuse 10:126–146

    Google Scholar 

  14. Lyon PJ (2004) The more things change. Latin Am Anthropol Rev 6:29–32

    Google Scholar 

  15. Presley CC, Lindsley CW (2018) DARK classics in chemical neuroscience: opium, a historical. Perspective ACS Chem Neurosci 9:2503–2518

    CAS  PubMed  Google Scholar 

  16. Cassels BK, Sáez-Briones P (2018) Dark classics in chemical neuroscience: mescaline. ACS Chem Neurosci 9:2448–2458

    CAS  PubMed  Google Scholar 

  17. Blainey MG (2015) Forbidden therapies: Santo Daime, Ayahuasca, and the prohibition of entheogens in Western society. J Relig Health 54:287–302

    PubMed  Google Scholar 

  18. Geiger HA, Wurst MG, Daniels RN (2018) DARK classics in chemical neuroscience: psilocybin. ACS Chem Neurosci 9:2438–2447

    CAS  PubMed  Google Scholar 

  19. Wasko MJ, Witt-Enderby PA, Surratt CK (2018) DARK classics in chemical neuroscience: Ibogaine. ACS Chem Neurosci 9:2475–2483

    CAS  PubMed  Google Scholar 

  20. Chowdhury AN (1995) Drug abuse and eco-stress adaptation. Addiction 90:19–20

    Google Scholar 

  21. Kamienski L (2016) Shooting up. A short history of drugs and war. Oxford University Press, pp 31–304

    Google Scholar 

  22. Rasmussen N (2011) Medical science and the military: the Allies’ use of amphetamine during world war II. J Interdiscip Hist 42:205–233

    PubMed  Google Scholar 

  23. Defalque RJ, Wright AJ (2011) Methamphetamine for Hitler’s Germany: 1937 to 1945. Bull Anesth Hist 29:21–24

    PubMed  Google Scholar 

  24. Zvejniece L, Svalbe B, Veinberg G, Grinberga S, Vorona M, Kalvinsh I, Dambrova M (2011) Investigation into stereoselective pharmacological activity of phenotropil. Basic Clin Pharmacol Toxicol 109:407–412

    CAS  PubMed  Google Scholar 

  25. Pedersen W, Sandberg S, Copes H (2015) High speed: amphetamine use in the context of conventional culture. Deviant Behav 36:146–165

    Google Scholar 

  26. Lakhan SE, Kirchgessner A (2012) Prescription stimulants in individuals with and without attention deficit hyperactivity disorder: misuse, cognitive impact, and adverse effects. Brain Behav 2:661–677

    PubMed  PubMed Central  Google Scholar 

  27. Yesalis CE, Bahrke MS (2002) History of doping in sport. In: Bahrke MS, Yesalis CE (eds) Performance-enhancing substances in sport and exercise. Human Kinetics, Champaign, IL, pp 1–20

    Google Scholar 

  28. Abbott K (2012) The 1904 Olympic Marathon may have been the strangest ever. Smithsonian Magazine, August 7 2012 https://wwwsmithsonianmagcom/history/the-1904-olympic-marathon-may-have-been-the-strangest-ever-14910747 Accessed 13 Oct 2020

    Google Scholar 

  29. Baron DA, Reardon CL, Baron SH (2013) Doping in sport. In: Baron DA, Reardon CL, Baron SH (eds) Clinical sports psychiatry: an international perspective. Wiley, Oxford, UK, pp 18–32

    Google Scholar 

  30. Verroken M (2000) Drug use and abuse in sport. Bailliere’s Clin Endocrinol Met 14:1–23

    CAS  Google Scholar 

  31. Annex VIII (1968) Doping, report of the medical commission, minutes of the 66th session of the International Olympic Committee. New Town Hall, Grenoble, February 1–5

    Google Scholar 

  32. World Anti-Doping Agency. List of prohibited substances and methods (2004). https://www.wada-ama.org/sites/default/files/resources/files/WADA_Prohibited_List_2004_EN.pdf. Accessed 13 Oct 2020

  33. World Anti-Doping Agency. List of prohibited substances and methods. (2020). https://www.wada-ama.org/sites/default/files/wada_2020_english_prohibited_list_0.pdf. Accessed 13 Oct 2020

  34. World Anti-Doping Agency. Anti-Doping Testing Figures Report 2006–2018. https://www.wada-ama.org/en/resources/laboratories/anti-doping-testing-figures-report. Accessed 13 Oct 2020

  35. Gurley BJ, Gardner SF, White LM, Wang PL (1998) Ephedrine pharmacokinetics after the ingestion of nutritional supplements containing Ephedra sinica (Ma Huang). Ther Drug Monit 20:439–445

    CAS  PubMed  Google Scholar 

  36. Lee MR (2011) The history of ephedra (ma-huang) J Roy Coll Phys Edinburgh 41:78–84

    Google Scholar 

  37. Morton SC (2005) Ephedra. Stat Sci 20:242–248

    Google Scholar 

  38. Roman MC (2004) Determination of ephedrine alkaloids in botanicals and dietary supplements by HPLC-UV: collaborative study. J AOAC Int 87:1–14

    Google Scholar 

  39. Chang CW, Hsu SY, Huang GQ, Hsu MC (2018) Ephedra alkaloid contents of Chinese herbal formulae sold in Taiwan. Drug Test Anal 10:350–356

    CAS  PubMed  Google Scholar 

  40. Miller SC (2004) Safety concerns regarding ephedrine-type alkaloid-containing dietary supplements. Military Med 169:87–93

    Google Scholar 

  41. Josefson D (1996) Herbal stimulant causes US deaths. Br Med J 312:1378–1379

    CAS  Google Scholar 

  42. Doyle H, Kargin M (1996) Herbal stimulant containing ephedrine has also caused psychosis. Br Med J 313:756

    Google Scholar 

  43. Ault A (1997) FDA proposes limits on ephedrine supplements. Lancet 349:1753

    Google Scholar 

  44. Nightingale SL (1996) Warning issued about the street drugs containing botanical sources of ephedrine. JAMA 275:1534

    CAS  PubMed  Google Scholar 

  45. Haller C, Benowitz N (2000) Adverse cardiovascular and central nervous system events associated with dietary supplements containing ephedra alkaloids. N Engl J Med 343:1833–1838

    CAS  PubMed  Google Scholar 

  46. Onakpoya IJ, Heneghan CJ, Aronson JK (2016) Post-marketing withdrawal of anti-obesity medicinal products because of adverse drug reactions: a systematic review. BMC Med 14:191–202

    PubMed  PubMed Central  Google Scholar 

  47. Lee MK, Cheng BWH, Che CT, Hsieh DPH (2000) Cytotoxicity assessment of Ma-huang (Ephedra) under different conditions of preparation. Toxicol Sci 56:424–430

    CAS  PubMed  Google Scholar 

  48. Knight J (2004) Safety concerns prompt US ban on dietary supplement. Nature 427:90

    CAS  PubMed  Google Scholar 

  49. Rocha T, Amaral JS, Oliveira MBPP (2016) Adulteration of dietary supplements by the illegal addition of synthetic drugs: a review. Comprehensive Rev Food Sci Food Safety 15:43–62

    Google Scholar 

  50. Wabe NT (2011) Chemistry, pharmacology, and toxicology of Khat (Catha Edulis Forsk): a review. Addict Health 3:137–149

    PubMed  PubMed Central  Google Scholar 

  51. Ros JJ, Pelders MG, De Smet PA (1999) A case of positive doping associated with a botanical food supplement. Pharm World Sci 21:44–46

    CAS  PubMed  Google Scholar 

  52. (1950) New and nonofficial remedies: methylhexamine; Forthane. JAMA 143:1156

    Google Scholar 

  53. Lisi A, Hasick N, Kazlauskas R, Goebel C (2011) Studies of methylhexaneamine in supplements and geranium oil. Drug Test Anal 3:873–876

    CAS  PubMed  Google Scholar 

  54. Elsohly MA, Gul W, Elsohly KM, Murphy TP, Weerasooriya A, Chittiboyina AG, Avula B, Khan I, Eichner A, Bowers LD (2012) Pelargonium oil and methyl hexaneamine (MHA): analytical approaches supporting the absence of MHA in authenticated Pelargonium graveolens plant material and oil. J Anal Toxicol 36:457–471

    CAS  PubMed  Google Scholar 

  55. ElSohly MA, Gul W, Tolbert C, ElSohly KM, Murphy TP, Avula B, Chittiboyina AG, Wang M, Khan IA, Yang M, Guo D, Zhang WD, Su J (2015) Methylhexanamine is not detectable in Pelargonium or Geranium species and their essential oils: a multi-Centre investigation. Drug Test Anal 7:645–654

    CAS  PubMed  Google Scholar 

  56. Austin KG, Travis J, Pace G, Lieberman HR (2014) Analysis of 1,3 dimethylamylamine concentrations in Geraniaceae, geranium oil and dietary supplements. Drug Test Anal 6:797–804

    Google Scholar 

  57. Pawar RS, Grundel E (2017) Overview of regulation of dietary supplements in the USA and issues of adulteration with phenethylamines (PEAs). Drug Test Anal 9:500–517

    CAS  PubMed  Google Scholar 

  58. Venhuis B, Keizers P, van Riel A, de Kaste D (2014) A cocktail of synthetic stimulants found in a dietary supplement associated with serious adverse events. Drug Test Anal 6:578–581

    CAS  PubMed  Google Scholar 

  59. Pawar RS, Sagi S, Leontyev D (2020) Analysis of bitter orange dietary supplements for natural and synthetic phenethylamines by LC-MS/MS. Drug Test Anal. https://doi.org/10.1002/dta.2871

  60. Pohl K, Kriech W (1991) Therapy of orthostatic disorders of cardiovascular regulation. Placebo controlled double-blind study with oxilofrine. Fortschr Med 109:685–688

    CAS  PubMed  Google Scholar 

  61. Yuen YP, Lai CK, Poon WT, Ng SW, Chan AY, Mak TW (2007) Adulteration of over-the-counter slimming products with pharmaceutical analogue-an emerging threat. Hong Kong Med J 13:216–220

    CAS  PubMed  Google Scholar 

  62. De Carvalho LM, Cohen PA, Silva CV, Moreira APL, Falcao TM, Dal Molin TR, Zemolin G, Martini M (2012) A new approach to determining pharmacologic adulteration of herbal weight loss products. Food Addit Contam A 29:1661–1667

    Google Scholar 

  63. Park S, Lee JG, Roh SH, Kim G, Kwon CH, Park HR, Kwon KS, Kim D, Kwon SW (2012) Determination of PDE-5 inhibitors and appetite suppressants in adulterated dietary supplements using LC/PDA and LC/MS. Food Addit Contam B 5:29–32

    CAS  Google Scholar 

  64. UNODC Early warning advisory on new psychoactive substances. What are NPS? https://www.unodc.org/LSS/Page/NPS#:~:text=UNODC%20uses%20the%20term%20%E2%80%9Cnew,pose%20a%20public%20health%20threat%E2%80%9D. Accessed 13 Oct 2020

  65. UNODC Early warning advisory on new psychoactive substances. pharmacology. https://www.unodc.org/LSS/Page/NPS/pharmacology Accessed 13 Oct 2020

  66. World Anti-Doping Agency. World Anti-Doping Code 2015. https://www.wada-ama.org/sites/default/files/resources/files/wada_anti-doping_code_2019_english_final_revised_v1_linked.pdf Accessed 13 Oct 2020

  67. World Anti-Doping Agency. World Anti-Doping Code 2021 https://www.wada-ama.org/sites/default/files/resources/files/2021_wada_code.pdf Accessed 13 Oct 2020

  68. World Anti-Doping Agency. List of prohibited substances and methods. (2021). https://www.wada-ama.org/sites/default/files/resources/files/2021list_en.pdf Accessed 13 Oct 2020

  69. Fantegrossia WE, Murnanea AC, Reissigb CJ (2008) The behavioral pharmacology of hallucinogens. Biochem Pharmacol 75:17–33

    Google Scholar 

  70. Zamberlan F, Sanz C, Martínez Vivot R, Pallavicini C, Erowid F, Erowid E, Tagliazucchi E (2018) The varieties of the psychedelic experience: a preliminary study of the association between the reported subjective effects and the binding affinity profiles of substituted phenethylamines and tryptamines. Front Integrative Neurosci 12:1–22

    Google Scholar 

  71. Calinski DM, Kisor DF, Sprague JE (2019) A review of the influence of functional group modifications to the core scaffold of synthetic cathinones on drug pharmacokinetics. Psychopharmacol (Berl) 236:881–890

    CAS  Google Scholar 

  72. Peters FT, Martinez-Ramirez JA (2010) Analytical toxicology of emerging drugs of abuse. Ther Drug Monit 32:532–539

    CAS  PubMed  Google Scholar 

  73. King LA (2014) New phenethylamines in Europe. Drug Test Anal 6:808–818

    CAS  PubMed  Google Scholar 

  74. El Sohly MA, Gul W (2014) LC–MS-MS analysis of dietary supplements for N-ethyl-a-ethyl-phenethylamine (ETH), N, N-diethylphenethylamine and phenethylamine. J Anal Toxicol 38:63–72

    Google Scholar 

  75. Kwiatkowska D, Wójtowicz M, Jarek A, Goebel C, Chajewska K, Turek-Lepa E, Pokrywka A, Kazlauskas R (2015) N,N-dimethyl-2-phenylpropan-1-amine – new designer agent found in athlete urine and nutritional supplement. Drug Test Anal 7:331–335

    CAS  PubMed  Google Scholar 

  76. Wójtowicz M, Jarek A, Chajewska K, Turek-Lepa E, Kwiatkowska D (2015) Determination of designer doping agent--2-ethylamino-1-phenylbutane--in dietary supplements and excretion study following single oral supplement dose. J Pharm Biomed Anal 115:523–533

    PubMed  Google Scholar 

  77. Wójtowicz M, Jarek A, Chajewska K, Kwiatkowska D (2016) N,N-dimethyl-2-phenylpropan-1-amine quantification in urine: application to excretion study following single oral dietary supplement dose. Anal Bioanal Chem 408:5041–5047

    PubMed  Google Scholar 

  78. Uralets V, App M, Rana S, Morgan S, Ross W (2014) Designer phenethylamines routinely found in human urine: 2-ethylamino-1-phenylbutane and 2-amino-1-phenylbutane. J Anal Toxicol 38:106–109

    CAS  PubMed  Google Scholar 

  79. Cohen PA, Travis JC, Venhuis BJ (2014) A methamphetamine analog (N,-diethyl-phenylethylamine) identified in a mainstream dietary supplement. Drug Test Anal 6:805–807

    CAS  PubMed  Google Scholar 

  80. Baumann MH, Walters HM, Niello M, Sitte HH (2018) Neuropharmacology of synthetic cathinones. Handb Exp Pharmacol 252:113–142

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Riley AL, Nelson KH, To P, López-Arnau R, Xu P, Wang D, Wang Y, Shen HW, Kuhn DM, Angoa-Perez M, Anneken JH, Muskiewicz D, Hall FS (2020) Abuse potential and toxicity of the synthetic cathinones (i.e., “Bath salts”). Neurosci Biobehav Rev 110:150–173

    CAS  PubMed  Google Scholar 

  82. Majchrzak M, Celiński R, Kuś P, Kowalska T, Sajewicz M (2018) The newest cathinone derivatives as designer drugs: an analytical and toxicological review. Forensic Toxicol 36:33–50

    CAS  PubMed  Google Scholar 

  83. Cohen PA, Travis JC, Venhuis BJ (2015) A synthetic stimulant never tested in humans, 1,3-dimethylbutylamine (DMBA), is identified in multiple dietary supplements. Drug Test Anal 7:83–87

    CAS  PubMed  Google Scholar 

  84. Cohen PA, Travis JC, Keizers PJH, Deuster P, Venhuis BJ (2018) Four experimental stimulants found in sports and weight loss supplements: 2-amino-6-methylheptane (octodrine), 1,4-dimethylamylamine (1,4-DMAA), 1,3-dimethylamylamine (1,3-DMAA) and 1,3-dimethylbutylamine (1,3-DMBA). Clin Toxicol (Phila) 56:421–426

    CAS  Google Scholar 

  85. Riley PA (2012) DMAA as a dietary supplement ingredient. Arch Intern Med 172:1038–1039

    Google Scholar 

  86. Han C, Schmitt J, Gilliland KM (2020) DARK classics in chemical neuroscience: Kratom. ACS Chem Neurosci. doi: https://doi.org/10.1021/acschemneuro.9b00535

  87. Mudge EM, Brown PN (2018) Determination of alkaloids in Mitragyna speciosa (Kratom) raw materials and dietary supplements by HPLC-UV: single-laboratory validation, first action 2017.14. J AOAC Int 101:964–965

    CAS  PubMed  Google Scholar 

  88. Chien GCC, Odonkor C, Amorapanth P (2017) Is Kratom the new ‘legal high’ on the block?: the case of an emerging opioid receptor agonist with substance abuse potential. Pain Phys 20:E195–E198

    Google Scholar 

  89. Alipour A, Patel PB, Shabbir Z, Gabrielson S (2019) Review of the many faces of synthetic cannabinoid toxicities. Ment Health Clin 9:93–99

    PubMed  PubMed Central  Google Scholar 

  90. Walsh KB, Andersen HK (2020) Molecular pharmacology of synthetic cannabinoids: delineating CB1 receptor-mediated cell signaling. Int J Mol Sci. https://doi.org/10.3390/ijms21176115

  91. Heo S, Yoo GJ, Choi JY, Park HJ, Do JA, Cho S, Baek SY, Park SK (2016) Simultaneous analysis of cannabinoid and synthetic cannabinoids in dietary supplements using UPLC with UV and UPLC–MS-MS. J Ana Toxicol 40:350–359

    CAS  Google Scholar 

  92. Choi H, Heo S, Choe S, Yang W, Park Y, Kim E, Chung H, Lee J (2013) Simultaneous analysis of synthetic cannabinoids in the materials seized during drug trafficking using GC-MS. Anal Bioanal Chem 405:3937–3944

    CAS  PubMed  Google Scholar 

  93. Rianprakaisang T, Gerona R, Hendrickson RG (2020) Commercial cannabidiol oil contaminated with the synthetic cannabinoid AB-FUBINACA given to a pediatric patient. Clin Toxicol (Phila) 58:215–216

    Google Scholar 

  94. Parr MK, Pokrywka A, Kwiatkowska D, Schänzer W (2011) Ingestion of designer supplements produced positive doping cases unexpected by the athletes. Biol Sport 28:153–157

    Google Scholar 

  95. US Anti-Doping Agency. Case studies and arbitration decisions. https://www.usada.org/athletes/substances/supplement-411/realize-safety-issues-exist/case-studies-arbitration-decisions/ Accessed 14 Oct 2020

  96. Walpurgis K, Thomas A, Geyer H, Mareck U, Thevis M (2020) Dietary supplement and food contaminations and their implications for doping controls. Foods. https://doi.org/10.3390/foods9081012

  97. Martínez-Sanz JM, Sospedra I, Ortiz CM, Baladía E, Gil-Izquierdo A, Ortiz-Moncada R (2017) Intended or unintended doping? A review of the presence of doping substances in dietary supplements used in sports. Nutrients 9:1093. https://doi.org/10.3390/nu9101093

    Article  CAS  PubMed Central  Google Scholar 

  98. Geyer H, Parr MK, Koehler K, Mareck U, Schänzer W, Thevis M (2008) Nutritional supplements cross-contaminated and faked with doping substances. J Mass Spectrom 43:892–902

    CAS  PubMed  Google Scholar 

  99. Kohler M, Thomas A, Geyer H, Petrou M, Schänzer W, Thevis M (2010) Confiscated black market products and nutritional supplements with non-approved ingredients analyzed in the Cologne doping control laboratory 2009. Drug Test Anal 2:533–537

    CAS  PubMed  Google Scholar 

  100. Attipoe S, Cohen PA, Eichner A, Deuster PA (2016) Variability of stimulant levels in nine sports supplements over a 9-month period. Int J Sport Nutr Exerc Metab 26:413–420

    CAS  PubMed  Google Scholar 

  101. Uchiyama N, Matsuda S, Kawamura M, Kikura-Hanajiri R, Goda Y (2014) Identification of two new-type designer drugs, piperazine derivative MT-45 (I-C6) and synthetic peptide Noopept (GVS-111), with synthetic cannabinoid A-834735, cathinone derivative 4-methoxy-α-PVP, and phenethylamine derivative 4-methylbuphedrine from illegal products. Forensic Toxicol 32:9–18

    CAS  Google Scholar 

  102. Australian Sports Anti-Doping Authority Supplements in sport. https://www.asada.gov.au/substances/supplements-sport Accessed 14 Oct 2020

  103. UK Anti-Doping Managing supplements risks. https://www.ukad.org.uk/athletes/managing-supplement-risks Accessed 14 Oct 2020

  104. de Hon O, Coumans B (2007) The continuing story of nutritional supplements and doping infractions. Br J Sports Med 41:800–805

    PubMed  PubMed Central  Google Scholar 

  105. Drug Enforcement Administration. National Forensic Laboratory Information System. https://www.nflis.deadiversion.usdoj.gov/ Accessed 14 Oct 2020

  106. European Monitoring Centre for Drugs and Drug Addiction. https://www.emcdda.europa.eu/ Accessed 14 Oct 2020

  107. Inter-American Drug Abuse Control Commission. http://www.cicad.oas.org/main/default_eng.asp Accessed 14 Oct 2020

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irene E. Mazzoni .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mazzoni, I.E. (2022). Contamination of Sports Supplements with Novel Psychoactive Substances: An Old History with New Players. In: Rabin, O., Corazza, O. (eds) Emerging Drugs in Sport. Springer, Cham. https://doi.org/10.1007/978-3-030-79293-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-79293-0_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-79292-3

  • Online ISBN: 978-3-030-79293-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics