Skip to main content

Dose Reduction Strategies for Iodinated Contrast Agents: Low-Tube Voltage and Iterative Reconstruction

  • Chapter
  • First Online:
Medical Imaging Contrast Agents: A Clinical Manual
  • 1001 Accesses

Abstract

The amount of an iodinated contrast agent can be effectively reduced by using a lower-tube voltage peak in clinical CT imaging while maintaining image quality by state-of-the-art iterative reconstruction techniques. The use of a lower-tube voltage peak in clinical CT imaging has advantages and disadvantages we need to know.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. McDonald JS, McDonald RJ, Carter RE, Katzberg RW, Kallmes DF, Williamson EE. Risk of intravenous contrast material-mediated acute kidney injury: a propensity score-matched study stratified by baseline-estimated glomerular filtration rate. Radiology. 2014;271(1):65–73. https://doi.org/10.1148/radiol.13130775. Epub 2014/01/31. Cited in: Pubmed; PMID 24475854.

    Article  PubMed  Google Scholar 

  2. Nyman U, Ahlkvist J, Aspelin P, Brismar T, Frid A, Hellstrom M, Liss P, Sterner G, Leander P, Contrast Media Committee of the Swedish Society of Uroradiology and in collaboration with the Swedish Society of Nephrology (GS) and the Swedish Society of Diabetology (AF). Preventing contrast medium-induced acute kidney injury: side-by-side comparison of Swedish-ESUR guidelines. Eur Radiol. 2018;28(12):5384–95. https://doi.org/10.1007/s00330-018-5678-6. Epub 2018/08/23. Cited in: Pubmed; PMID 30132106.

    Article  PubMed  Google Scholar 

  3. Harbron R, Ainsbury EA, Bouffler SD, Tanner RJ, Eakins JS, Pearce MS. Enhanced radiation dose and DNA damage associated with iodinated contrast media in diagnostic X-ray imaging. Br J Radiol. 2017;90(1079):20170028. https://doi.org/10.1259/bjr.20170028. Epub 2017/08/24. Cited in: Pubmed; PMID 28830201.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Pathe C, Eble K, Schmitz-Beuting D, Keil B, Kaestner B, Voelker M, Kleb B, Klose KJ, Heverhagen JT. The presence of iodinated contrast agents amplifies DNA radiation damage in computed tomography. Contrast Media Mol Imaging. 2011;6(6):507–13. https://doi.org/10.1002/cmmi.453. Epub 2011/12/07. Cited in: Pubmed; PMID 22144029.

    Article  CAS  PubMed  Google Scholar 

  5. Deinzer CK, Danova D, Kleb B, Klose KJ, Heverhagen JT. Influence of different iodinated contrast media on the induction of DNA double-strand breaks after in vitro X-ray irradiation. Contrast Media Mol Imaging. 2014;9(4):259–67. https://doi.org/10.1002/cmmi.1567. Epub 2014/04/08. Cited in: Pubmed; PMID 24706609.

    Article  CAS  PubMed  Google Scholar 

  6. Padole A, Ali Khawaja RD, Kalra MK, Singh S. CT radiation dose and iterative reconstruction techniques. AJR Am J Roentgenol. 2015;204(4):W384–92. https://doi.org/10.2214/AJR.14.13241. Epub 2015/03/21. Cited in: Pubmed; PMID 25794087.

    Article  PubMed  Google Scholar 

  7. Willemink MJ, Noel PB. The evolution of image reconstruction for CT-from filtered back projection to artificial intelligence. Eur Radiol. 2019;29(5):2185–95. https://doi.org/10.1007/s00330-018-5810-7. Epub 2018/11/01. Cited in: Pubmed; PMID 30377791.

    Article  PubMed  Google Scholar 

  8. Huda W, Lieberman KA, Chang J, Roskopf ML. Patient size and x-ray technique factors in head computed tomography examinations. II. Image quality. Med Phys. 2004;31(3):595–601. https://doi.org/10.1118/1.1646233. Epub 2004/04/09. Cited in: Pubmed; PMID 15070259.

    Article  PubMed  Google Scholar 

  9. Grant KL, Flohr TG, Krauss B, Sedlmair M, Thomas C, Schmidt B. Assessment of an advanced image-based technique to calculate virtual monoenergetic computed tomographic images from a dual-energy examination to improve contrast-to-noise ratio in examinations using iodinated contrast media. Invest Radiol. 2014;49(9):586–92. https://doi.org/10.1097/RLI.0000000000000060. Epub 2014/04/09. Cited in: Pubmed; PMID 24710203.

    Article  PubMed  Google Scholar 

  10. Iyama Y, Nakaura T, Yokoyama K, Kidoh M, Harada K, Oda S, Tokuyasu S, Yamashita Y. Low-contrast and low-radiation dose protocol in cardiac computed tomography: usefulness of low tube voltage and knowledge-based iterative model reconstruction algorithm. J Comput Assist Tomogr. 2016;40(6):941–7. https://doi.org/10.1097/RCT.0000000000000440. Epub 2016/05/26. Cited in: Pubmed; PMID 27224224.

    Article  PubMed  Google Scholar 

  11. Van Cauteren T, Van Gompel G, Tanaka K, Verdries DE, Belsack D, Nieboer KH, Willekens I, Evans P, Macholl S, Verfaillie G, Droogmans S, de Mey J, Buls N. The impact of combining a low-tube voltage acquisition with iterative reconstruction on total iodine dose in coronary CT angiography. Biomed Res Int. 2017;2017:2476171. https://doi.org/10.1155/2017/2476171. Epub 2017/06/18. Cited in: Pubmed; PMID 28620616.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Szucs-Farkas Z, Megyeri B, Christe A, Vock P, Heverhagen JT, Schindera ST. Prospective randomised comparison of diagnostic confidence and image quality with normal-dose and low-dose CT pulmonary angiography at various body weights. Eur Radiol. 2014;24(8):1868–77. https://doi.org/10.1007/s00330-014-3208-8. Epub 2014/05/29. Cited in: Pubmed; PMID 24865694.

    Article  PubMed  Google Scholar 

  13. Meyer M, Haubenreisser H, Schabel C, Leidecker C, Schmidt B, Schoenberg SO, Henzler T. CT pulmonary angiography in patients with acute or chronic renal insufficiency: evaluation of a low dose contrast material protocol. Sci Rep. 2018;8(1):1995. https://doi.org/10.1038/s41598-018-20254-y. Epub 2018/02/02. Cited in: Pubmed; PMID 29386532.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Yuan R, Shuman WP, Earls JP, Hague CJ, Mumtaz HA, Scott-Moncrieff A, Ellis JD, Mayo JR, Leipsic JA. Reduced iodine load at CT pulmonary angiography with dual-energy monochromatic imaging: comparison with standard CT pulmonary angiography—a prospective randomized trial. Radiology. 2012;262(1):290–7. https://doi.org/10.1148/radiol.11110648. Epub 2011/11/16. Cited in: Pubmed; PMID 22084206.

    Article  PubMed  Google Scholar 

  15. Luo S, Zhang LJ, Meinel FG, Zhou CS, Qi L, McQuiston AD, Schoepf UJ, Lu GM. Low tube voltage and low contrast material volume cerebral CT angiography. Eur Radiol. 2014;24(7):1677–85. https://doi.org/10.1007/s00330-014-3184-z. Epub 2014/05/06. Cited in: Pubmed; PMID 24792591.

    Article  PubMed  Google Scholar 

  16. Kanematsu M, Goshima S, Kawai N, Kondo H, Miyoshi T, Watanabe H, Noda Y, Tanahashi Y, Bae KT. Low-iodine-load and low-tube-voltage CT angiographic imaging of the kidney by using bolus tracking with saline flushing. Radiology. 2015;275(3):832–40. https://doi.org/10.1148/radiol.14141457. Epub 2014/12/11. Cited in: Pubmed; PMID 25494297.

    Article  PubMed  Google Scholar 

  17. Ichikawa T, Okada M, Kondo H, Sou H, Murakami T, Kanematsu M, Yoshikawa S, Shiosakai K, Hayakawa A, Awai K, Yoshimitsu K, Yamashita Y. Recommended iodine dose for multiphasic contrast-enhanced mutidetector-row computed tomography imaging of liver for assessing hypervascular hepatocellular carcinoma: multicenter prospective study in 77 general hospitals in Japan. Acad Radiol. 2013;20(9):1130–6. https://doi.org/10.1016/j.acra.2013.05.003. Epub 2013/08/13. Cited in: Pubmed; PMID 23931427.

    Article  PubMed  Google Scholar 

  18. Noda Y, Kanematsu M, Goshima S, Kondo H, Watanabe H, Kawada H, Kawai N, Tanahashi Y, Miyoshi TRT, Bae KT. Reducing iodine load in hepatic CT for patients with chronic liver disease with a combination of low-tube-voltage and adaptive statistical iterative reconstruction. Eur J Radiol. 2015;84(1):11–8. https://doi.org/10.1016/j.ejrad.2014.10.008. Epub 2014/12/03. Cited in: Pubmed; PMID 25455414.

    Article  PubMed  Google Scholar 

  19. Goshima S, Kanematsu M, Noda Y, Kawai N, Kawada H, Ono H, Bae KT. Minimally required iodine dose for the detection of hypervascular hepatocellular carcinoma on 80-kVp CT. AJR Am J Roentgenol. 2016;206(3):518–25. https://doi.org/10.2214/AJR.15.15138. Epub 2016/02/24. Cited in: Pubmed; PMID 26901007.

    Article  PubMed  Google Scholar 

  20. Awai K, Nakayama Y, Nakaura T, Yanaga Y, Tamura Y, Hatemura M, Funama Y, Yamashita Y. Prediction of aortic peak enhancement in monophasic contrast injection protocols at multidetector CT: phantom and patient studies. Radiat Med. 2007;25(1):14–21. https://doi.org/10.1007/s11604-006-0095-1. Epub 2007/01/17. Cited in: Pubmed; PMID 17225048.

    Article  PubMed  Google Scholar 

  21. Benz MR, Szucs-Farkas Z, Froehlich JM, Stadelmann G, Bongartz G, Bouwman L, Schindera ST. Scan time adapted contrast agent injection protocols with low volume for low-tube voltage CT angiography: an in vitro study. Eur J Radiol. 2017;93:65–9. https://doi.org/10.1016/j.ejrad.2017.05.017. Epub 2017/07/03. Cited in: Pubmed; PMID 28668433.

    Article  PubMed  Google Scholar 

  22. Schindera ST, Nelson RC, Howle L, Nichols E, DeLong DM, Merkle EM. Effect of varying injection rates of a saline chaser on aortic enhancement in CT angiography: phantom study. Eur Radiol. 2008;18(8):1683–9. https://doi.org/10.1007/s00330-008-0911-3. Epub 2008/03/21. Cited in: Pubmed; PMID 18351346.

    Article  PubMed  Google Scholar 

  23. Akagi M, Nakamura Y, Higaki T, Narita K, Honda Y, Zhou J, Yu Z, Akino N, Awai K. Deep learning reconstruction improves image quality of abdominal ultra-high-resolution CT. Eur Radiol. 2019;29(11):6163–71. https://doi.org/10.1007/s00330-019-06170-3. Epub 2019/04/13. Cited in: Pubmed; PMID 30976831.

    Article  PubMed  Google Scholar 

  24. Solomon J, Marin D, Roy Choudhury K, Patel B, Samei E. Effect of radiation dose reduction and reconstruction algorithm on image noise, contrast, resolution, and detectability of subtle hypoattenuating liver lesions at multidetector CT: filtered back projection versus a commercial model-based iterative reconstruction algorithm. Radiology. 2017;284(3):777–87. https://doi.org/10.1148/radiol.2017161736. Epub 2017/02/09. Cited in: Pubmed; PMID 28170300.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Morisaka, H. (2021). Dose Reduction Strategies for Iodinated Contrast Agents: Low-Tube Voltage and Iterative Reconstruction. In: Erturk, S.M., Ros, P.R., Ichikawa, T., Saylisoy, S. (eds) Medical Imaging Contrast Agents: A Clinical Manual. Springer, Cham. https://doi.org/10.1007/978-3-030-79256-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-79256-5_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-79255-8

  • Online ISBN: 978-3-030-79256-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics