Skip to main content

Comparison of Neural Networks Aiding Material Compatibility Assessment

  • Conference paper
  • First Online:
Innovations in Mechatronics Engineering (icieng 2021)

Abstract

A new method of selection of materials at the design step is presented in this paper. The method takes into recyclability of materials. The authors compare the effectiveness of neural networks (a multilayer perceptron, radial basis function networks, and self-organizing feature map - SOFM networks) as modelling tools aiding the selection of compatible materials in ecodesign. The best artificial neural networks were used in an expert system. The input data for the selection of materials was start point to initiate the study. The input data, specified in cooperation with designers, include both technological and environmental parameters which guarantee the desired compatibility of materials. Next, models were developed using the selected neural networks. The models were assessed and implemented into an expert system. The authors show which models best fit their purpose and why. Models aiding the compatible materials selection help boost the recycling properties of designed products. Neural networks are a very good tool to support the selection of materials in the ecodesign. This has been proven in the article.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rojek, I., Dostatni, E.: Artificial neural network-supported selection of materials in ecodesign. In: Trojanowska, J., Ciszak, O., Machado, J.M., Pavlenko, I. (eds.) MANUFACTURING 2019. LNME, vol. 1, pp. 422–431. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-18715-6_35

    Chapter  Google Scholar 

  2. Rojek, I., Dostatni, E., Hamrol, A.: Automation and digitization of the material selection process for ecodesign. In: Burduk, A., Chlebus, E., Nowakowski, T., Tubis, A. (eds.) ISPEM 2018. AISC, vol. 835, pp. 523–532. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-97490-3_50

    Chapter  Google Scholar 

  3. Rojek, I., Dostatni, E., Hamrol, A.: Ecodesign of technological processes with the use of decision trees method. In: Pérez García, H., Alfonso-Cendón, J., Sánchez González, L., Quintián, H., Corchado, E. (eds.) SOCO/CISIS/ICEUTE 2017. AISC, vol. 649, pp. 318–327. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-67180-2_31

    Chapter  Google Scholar 

  4. Dostatni, E., Rojek, I., Hamrol, A.: The use of machine learning method in concurrent ecodesign of products and technological processes. In: Hamrol, A., Ciszak, O., Legutko, S., Jurczyk, M. (eds.) Advances in Manufacturing. LNME, vol. 649, pp. 321–330. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-68619-6_31

    Chapter  Google Scholar 

  5. Karlsson, R., Luttropp, C.: EcoDesign: what’s happening? J. Clean. Prod. 14, 1291–1298 (2006)

    Article  Google Scholar 

  6. Wikipedia. https://pl.wikipedia.org/wiki/Recykling. Accessed 21 Nov 2018

  7. Chiang, T.A., Che, Z.H., Wang, T.T.: A design for environment methodology for evaluation and improvement of derivative consumer electronic product development. J. Syst. Sci. Syst. Eng. 20(3), 260–274 (2011)

    Article  Google Scholar 

  8. Li, J., Wu, Z., Zhang, H.-C.: Application of neural network on environmental impact assessment tools. Int. J. Sustain. Manuf. 1(1/2), 100–121 (2008)

    Google Scholar 

  9. Artificial Intelligence put to use in Recycling. http://www.mistbreaker.com/sustainability/artificial-intelligence-put-use-recycling. Accessed 19 Apr 2019

  10. Jamróz, D., Niedoba, T.: Application of multidimensional data visualization by means of self-organizing Kohonen maps to evaluate classification possibilities of various coal types. Arch. Min. Sci. 60(1), 39–50 (2015)

    Google Scholar 

  11. Hendzel, Z.: Collision free path planning and control of wheeled mobile robot using Kohonen self-organising map. Bull. Pol. Acad. Sci. Tech. Sci. 53(1), 39–47 (2005)

    MATH  Google Scholar 

  12. Grzecha, D.: Soft fault clustering in analog electronic circuits with the use of self-organizing neural network. Metrol. Meas. Syst. XVIII(4), 555–568 (2011)

    Article  Google Scholar 

  13. Kamiński, M., Kowalski, C.T.: Rotor fault detector of the converter fed induction motor based on RBF neural network. Bull. Pol. Acad. Sci. Tech. Sci. 62(1), 69–76 (2014)

    Google Scholar 

  14. Osowski, S., Siwek, K.: Local dynamic integration of ensemble in prediction of time series. Bull. Pol. Acad. Sci. Tech. Sci. 67(3), 517–525 (2019)

    Google Scholar 

  15. Luzar, M., Sobolewski, Ł., Miczulski, W., Korbicz, J.: Prediction of corrections for the Polish time scale UTC(PL) using artificial neural networks. Bull. Pol. Acad. Sci. Tech. Sci. 61(3), 589–594 (2013)

    Google Scholar 

  16. Osowski, S., Siwek, K., Szupiluk, R.: Ensemble neural network approach for accurate load forecasting in the power system. Int. J. Appl. Math. Comput. Sci. 19(2), 303–315 (2009)

    Article  Google Scholar 

  17. Dostatni, E., Diakun, J., Grajewski, D., Wichniarek, R., Karwasz, A.: Multi-agent system to support decision-making process in design for recycling. Soft. Comput. 20(11), 4347–4361 (2016). https://doi.org/10.1007/s00500-016-2302-z

    Article  Google Scholar 

  18. Dostatni, E., Diakun, J., Grajewski, D., Wichniarek, R., Karwasz, A.: Functionality assessment of ecodesign support system. Manag. Prod. Eng. Rev. 6(1), 10–15 (2015)

    Google Scholar 

  19. Dostatni, E.: Recycling-oriented eco-design methodology based on decentralised artificial intelligence. Manag. Prod. Eng. Rev. 9(3), 79–89 (2018)

    Google Scholar 

  20. Rojek, I.: Neural networks as prediction models for water intake in water supply system. In: Rutkowski, L., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2008. LNCS (LNAI), vol. 5097, pp. 1109–1119. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-69731-2_104

    Chapter  Google Scholar 

  21. Rojek, I.: Hybrid neural networks as prediction models. In: Rutkowski, L., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2010. LNCS (LNAI), vol. 6114, pp. 88–95. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13232-2_12

    Chapter  Google Scholar 

  22. Rojek, I.: Classifier models in intelligent CAPP systems. In: Cyran, K.A., Kozielski, S., Peters, J.F., Stańczyk, U., Wakulicz-Deja, A. (eds.) Man-Machine Interactions. AINSC, vol. 59, pp. 311–319. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-00563-3_32

    Chapter  Google Scholar 

  23. Tadeusiewicz, R., Chaki, R., Chaki, N.: Exploring Neural Networks with C#. CRC Press Taylor & Francis Group, Boca Raton (2014)

    Google Scholar 

Download references

Acknowledgments

The work presented in the paper has been co-financed under 0613/SBAD/8727 and grants to maintain research potential Kazimierz Wielki University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Izabela Rojek .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Rojek, I., Dostatni, E., Kotlarz, P. (2022). Comparison of Neural Networks Aiding Material Compatibility Assessment. In: Machado, J., Soares, F., Trojanowska, J., Yildirim, S. (eds) Innovations in Mechatronics Engineering. icieng 2021. Lecture Notes in Mechanical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-030-79168-1_2

Download citation

Publish with us

Policies and ethics