Skip to main content

Incorporating Inteco’s 3D Crane into Control Engineering Curriculum

  • Conference paper
  • First Online:
Innovations in Mechatronics Engineering (icieng 2021)

Abstract

The paper describes the Inteco 3D Crane as a suitable scale-model to support practical training of students in control engineering and related fields. It also contains an illustrative case study controlling the payload position in 3D space in a robust way using the systematic polynomial approach, including also experimental identification of the crane dynamics in all three axes. As such, it can serve as an inspiration for both academic staff and students dealing with related fields of study.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Horacek, P.: Laboratory experiments for control theory courses: a survey. Annu. Rev. Control 24, 151–162 (2000)

    Article  Google Scholar 

  2. Leva, A.: A simple and flexible experimental laboratory for automatic control courses. Control Eng. Pract. 14, 167–176 (2006)

    Article  Google Scholar 

  3. Gazdos, F.: Using real-time laboratory models in the process of control education. In: Machado, J., Soares, F., Veiga, G. (eds.) HELIX 2018. LNEE, vol. 505, pp. 1097–1103. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-91334-6_151

    Chapter  Google Scholar 

  4. INTECO. http://www.inteco.com.pl. Accessed 30 Jan 2020

  5. Abdel-Rahman, E.M., Nayfeh, A.H., Masoud, Z.N.: Dynamics and control of cranes: a review. J. Vib. Control 9(7), 863–908 (2003)

    Article  Google Scholar 

  6. Nguyen, Q.T., Vesely, V.: Robust decentralized controller design for 3D crane. In: Fikar, M., Kvasnica, M. (eds.) Process Control 2011, pp. 485–489 (2011)

    Google Scholar 

  7. Trajkovic, D.M., Antic, D.S., Nikolic, S.S., Peric, S.L., Milovanovic, M.B.: Fuzzy logic-based control of three-dimensional crane system. Autom. Control Robot. 12(1), 31–42 (2013)

    Google Scholar 

  8. Petrehus, P., Lendek, Z., Raica P.: Fuzzy modeling and design for a 3D Crane. In: IFAC ICONS 2013, pp. 479–484. IFAC (2013)

    Google Scholar 

  9. Vazquez, C., Fridman, L., Collado, J., Castillo, I.: Second-order sliding mode control of a perturbed-crane. J. Dyn. Syst. Measur. Control 137(8) (2015)

    Google Scholar 

  10. Aksjonov, A., Vodovozov, V., Petlenkov, E.: Three-dimensional crane modelling and control using euler-lagrange state-space approach and anti-swing fuzzy logic. Electr. Control. Commun. Eng. 9(1), 5–13 (2016)

    Article  Google Scholar 

  11. Pauluk, M.: Optimal and robust control of 3D crane. Przeglad Elektrotechniczny 92(2), 206–212 (2016)

    Google Scholar 

  12. Hunt, K.J.: Polynomial Methods in Optimal Control and Filtering. Peter Peregrinus Ltd., London (1993)

    Book  Google Scholar 

  13. Kucera, V.: Diophantine equations in control – a survey. Automatica 29(6), 1361–1375 (1993)

    Article  MathSciNet  Google Scholar 

  14. Anderson, B.D.O.: From Youla-Kucera to identification, adaptive and nonlinear control. Automatica 34(12), 1485–1506 (1998)

    Article  MathSciNet  Google Scholar 

  15. 3D Crane User’s Manual. Inteco Ltd., Krakow (2017)

    Google Scholar 

  16. Sarmanova, L.: Modelling, identification and control of an Inteco 3D Crane. Master’s thesis, Tomas Bata University in Zlin, Faculty of Applied Informatics, Zlin (2019)

    Google Scholar 

  17. Kucera, V.: The pole placement equation – a survey. Kybernetika 30(6), 578–584 (1994)

    MathSciNet  MATH  Google Scholar 

  18. Skogestad, S., Postlethwaite, I.: Multivariable Feedback Control: Analysis and Design. Wiley, Chichester (2005)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frantisek Gazdos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gazdos, F., Sarmanova, L. (2022). Incorporating Inteco’s 3D Crane into Control Engineering Curriculum. In: Machado, J., Soares, F., Trojanowska, J., Yildirim, S. (eds) Innovations in Mechatronics Engineering. icieng 2021. Lecture Notes in Mechanical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-030-79168-1_10

Download citation

Publish with us

Policies and ethics