Skip to main content

Dynamic Plume Tracking Utilizing Symbiotic Heterogeneous Remote Sensing Platforms

  • Conference paper
  • First Online:
Artificial Intelligence Applications and Innovations (AIAI 2021)

Abstract

The current study focuses on the problem of continuously tracking a dynamically evolving \(CH_4\) plume utilizing a mutually built consensus by heterogeneous sensing platforms: mobile and static sensors. Identifying the major complexities and emergent dynamics (leakage source, intensity, time) of such problem, a distributed, multi-agent, optimization algorithm was developed and evaluated in an indoor continuous plume-tracking application (where reaction time is critical due to the limited volume available for air saturation by the \(CH_4\) dispersion). The high-fidelity ANSYS Fluent suite realistic simulation environment was used to acquire the gas diffusion evolution through time. The analysis of the simulation results indicated that the proposed algorithm was capable of continuously readapting the mobile sensing platforms formation according to the density and the dispersed volume plume; combining additive information from the static sensors. Moreover, a scalability analysis with respect to the number of mobile platforms revealed the flexibility of the proposed algorithm to different numbers of available assets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abraham, S., Li, X.: A cost-effective wireless sensor network system for indoor air quality monitoring applications. Procedia Comput. Sci. 34, 165–171 (2014). https://doi.org/10.1016/j.procs.2014.07.090. In: The 9th International Conference on Future Networks and Communications (FNC 2014)/The 11th International Conference on Mobile Systems and Pervasive Computing (MobiSPC 2014)/Affiliated Workshops

  2. Albani, D., Nardi, D., Trianni, V.: Field coverage and weed mapping by UAV swarms. In: 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 4319–4325 (2017). https://doi.org/10.1109/IROS.2017.8206296

  3. ANSYS, I.: Ansys fluent user’s guide, release 19.0. Equation (6.68) (2018)

    Google Scholar 

  4. Ben-Ari, M., Mondada, F.: Elements of Robotics. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-62533-1

    Book  MATH  Google Scholar 

  5. Ayasse, A.K., et al.: Evaluating the effects of surface properties on methane retrievals using a synthetic airborne visible/infrared imaging spectrometer next generation (AVIRIS-NG) image. Remote Sens. Environ. 215, 386–397 (2018). https://doi.org/10.1016/j.rse.2018.06.018

    Article  Google Scholar 

  6. Bhaganagar, K., Bhimireddy, S.R.: Assessment of the plume dispersion due to chemical attack on April 4, 2017, in Syria. Natural Hazards 88(3), 1893–1901 (2017). https://doi.org/10.1007/s11069-017-2936-x

    Article  Google Scholar 

  7. Board, N.T.S.: Railroad accident report ntsb/rar-06/03 pb2006-916303 notation 7675d. https://www.ntsb.gov/investigations/AccidentReports/Reports/RAR0603.pdf

  8. Chen, X., Tang, J., Lao, S.: Review of unmanned aerial vehicle swarm communication architectures and routing protocols. Appl. Sci. 10(10), 3661 (2020)

    Article  Google Scholar 

  9. Clark, K., et al.: Lung function before and after a large chlorine gas release in Graniteville, South Carolina. Ann. Am. Thorac. Soc. 13(3), 356–363 (2016). https://doi.org/10.1513/AnnalsATS.201508-525OC

    Article  Google Scholar 

  10. Hackner, A., Oberpriller, H., Ohnesorge, A., Hechtenberg, V., Müller, G.: Heterogeneous sensor arrays: merging cameras and gas sensors into innovative fire detection systems. Sens. Actuators B 231, 497–505 (2016). https://doi.org/10.1016/j.snb.2016.02.081

    Article  Google Scholar 

  11. Ishida, H., Wada, Y., Matsukura, H.: Chemical sensing in robotic applications: a review. IEEE Sens. J. 12(11), 3163–3173 (2012). https://doi.org/10.1109/JSEN.2012.2208740

    Article  Google Scholar 

  12. Kapoutsis, A.C., et al.: Real-time adaptive multi-robot exploration with application to underwater map construction. Auton. Robots 40(6), 987–1015 (2016)

    Article  Google Scholar 

  13. Kapoutsis, A.C., Chatzichristofis, S.A., Kosmatopoulos, E.B.: DARP: divide areas algorithm for optimal multi-robot coverage path planning. J. Intell. Robot. Syst. 86(3–4), 663–680 (2017)

    Article  Google Scholar 

  14. Kapoutsis, A.C., Chatzichristofis, S.A., Kosmatopoulos, E.B.: A distributed, plug-n-play algorithm for multi-robot applications with a priori non-computable objective functions. Int. J. Robot. Res. 38(7), 813–832 (2019)

    Article  Google Scholar 

  15. Kapoutsis, A.C., Michailidis, I.T., Boutalis, Y., Kosmatopoulos, E.B.: Building synergetic consensus for dynamic gas-plume tracking applications using UAV platforms. Comput. Electr. Eng. 91, 107029 (2021). https://doi.org/10.1016/j.compeleceng.2021.107029

    Article  Google Scholar 

  16. KGaA, H.D.S.A.C.: Gas dispersion. https://www.draeger.com/library/content/gas_dispersion_br_9046434_en.pdf

  17. Kosmatopoulos, E.B., Michailidis, I.T., Korkas, C.D., Ravanis, C.: Local4global adaptive optimization and control for system-of-systems. In: 2015 European Control Conference (ECC), pp. 3536–3541 (2015). https://doi.org/10.1109/ECC.2015.7331081

  18. Koutras, D.I., Kapoutsis, A.C., Kosmatopoulos, E.B.: Autonomous and cooperative design of the monitor positions for a team of UAVS to maximize the quantity and quality of detected objects. IEEE Robot. Autom. Lett. 5(3), 4986–4993 (2020)

    Article  Google Scholar 

  19. Kumar, S., Torres, C., Ulutan, O., Ayasse, A., Roberts, D., Manjunath, B.S.: Deep remote sensing methods for methane detection in overhead hyperspectral imagery. In: 2020 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 1765–1774 (2020). https://doi.org/10.1109/WACV45572.2020.9093600

  20. Mathews, E., Graf, T., Kulathunga, K.S.S.B.: Biologically inspired swarm robotic network ensuring coverage and connectivity. In: 2012 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 84–90 (2012). https://doi.org/10.1109/ICSMC.2012.6377681

  21. McIlvaine Parsons, H.: Chapter 34 - robot programming/handbook of human-computer interaction, pp. 737–754 (1988). https://doi.org/10.1016/B978-0-444-70536-5.50039-7

  22. Michailidis, I.T., Manolis, D., Michailidis, P., Diakaki, C., Kosmatopoulos, E.B.: A decentralized optimization approach employing cooperative cycle-regulation in an intersection-centric manner: a complex urban simulative case study. Transp. Res. Interdisc. Perspect. 8, 100232 (2020). https://doi.org/10.1016/j.trip.2020.100232

    Article  Google Scholar 

  23. Michailidis, I.T., et al.: Energy-efficient HVAC management using cooperative, self-trained, control agents: a real-life German building case study. Appl. Energy 211, 113–125 (2018). https://doi.org/10.1016/j.apenergy.2017.11.046

    Article  Google Scholar 

  24. Michailidis, I., et al.: Balancing energy efficiency with indoor comfort using smart control agents: a simulative case study. Energies 13(23), 6228 (2020)

    Article  Google Scholar 

  25. Peng, X., Qin, H., Hu, Z., Cai, B., Liang, J., Ou, H.: Gas plume detection in infrared image using mask R-CNN with attention mechanism. In: AOPC 2019: AI in Optics and Photonics, vol. 11342, pp. 204–209 (2019). https://doi.org/10.1117/12.2548179

  26. Saska, M., Langr, J., Preucil, L.: Plume tracking by a self-stabilized group of micro aerial vehicles. In: Modelling and Simulation for Autonomous Systems, pp. 44–55 (2014). https://doi.org/10.1007/978-3-319-13823-7

  27. Services, C.C.C.H.: Major accidents at chemical/refinery plants. https://cchealth.org/hazmat/accident-history.php

  28. Sheu, J.B.: An emergency logistics distribution approach for quick response to urgent relief demand in disasters. Transp. Res. Part E Logistics Transp. Rev. 43, 687–709 (2007). https://doi.org/10.1016/j.tre.2006.04.004

    Article  Google Scholar 

  29. Tahir, A., Böling, J., Haghbayan, M.H., Toivonen, H.T., Plosila, J.: Swarms of unmanned aerial vehicles – a survey. J. Ind. Inf. Integr. 16, 100106 (2019). https://doi.org/10.1016/j.jii.2019.100106

  30. Thomas, H., Watson, I., Kearney, C., Carn, S., Murray, S.: A multi-sensor comparison of sulphur dioxide emissions from the 2005 eruption of Sierra Negra volcano, Galapagos Islands. Remote Sens. Environ. 113(6), 1331–1342 (2009). https://doi.org/10.1016/j.rse.2009.02.019

    Article  Google Scholar 

  31. Tosato, P., Facinelli, D., Prada, M., Gemma, L., Rossi, M., Brunelli, D.: An autonomous swarm of drones for industrial gas sensing applications. In: 2019 IEEE 20th International Symposium on A World of Wireless, Mobile and Multimedia Networks (WoWMoM), pp. 1–6 (2019). https://doi.org/10.1109/WoWMoM.2019.8793043

  32. Viseras, A., Wiedemann, T., Manss, C., Karolj, V., Shutin, D., Marchal, J.: Beehive-inspired information gathering with a swarm of autonomous drones. Sensors 19(19), 4349 (2019). https://doi.org/10.3390/s19194349

    Article  Google Scholar 

  33. Visvanathan, R., et al.: Gas sensing mobile robot: a review. J. Telecommun. Electron. Comput. Eng. (JTEC). 10(1—-15), 101–105 (2018)

    Google Scholar 

  34. Xing, Y., Vincent, T., Cole, M., Gardner, J.: Real-time thermal modulation of high bandwidth MOX gas sensors for mobile robot applications. Sensors 19(5), 1180 (2019). https://doi.org/10.3390/s19051180

    Article  Google Scholar 

  35. Zhang, Y., Zou, D., Zheng, J., Fang, X., Luo, H.: Formation mechanism of quick emergency response capability for urban rail transit: inter-organizational collaboration perspective. Adv. Mech. Eng. 8(6), 1–14 (2016). https://doi.org/10.1177/1687814016647881

    Article  Google Scholar 

Download references

Acknowledgments

This research is carried out/funded in the context of the project “Development and evaluation of an optimal decision-making algorithm for cooperative autonomous vehicles” (MIS 5050057) under the call for proposals “Researchers’ support with an emphasis on young researchers- 2nd Cycle” (EDULLL 103). The project is co-financed by Greece and the European Union (European Social Fund- ESF) by the Operational Programme Human Resources Development, Education and Lifelong Learning 2014–2020.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iakovos T. Michailidis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 IFIP International Federation for Information Processing

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Michailidis, I.T., Kapoutsis, A.C., Kosmatopoulos, E.B., Boutalis, Y. (2021). Dynamic Plume Tracking Utilizing Symbiotic Heterogeneous Remote Sensing Platforms. In: Maglogiannis, I., Macintyre, J., Iliadis, L. (eds) Artificial Intelligence Applications and Innovations. AIAI 2021. IFIP Advances in Information and Communication Technology, vol 627. Springer, Cham. https://doi.org/10.1007/978-3-030-79150-6_48

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-79150-6_48

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-79149-0

  • Online ISBN: 978-3-030-79150-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics