Skip to main content

Perceptual Aspects of VR

  • Chapter
  • First Online:
Virtual and Augmented Reality (VR/AR)

Abstract

Virtual Reality (VR) has the special ability to provide the user with the illusion of presence in a virtual world. This is one aspect of the valuable potential that VR possesses concerning the design and realization of human–machine interfaces. Whether and how successfully this potential is exploited is not only a technical problem. It is also based on processes of human perception to interpret the sensory stimuli presented by the virtual environment. This chapter deals with basic knowledge from the field of human information processing for a better understanding of the associated perceptual issues. Of particular interest in VR are the perception of space and the perception of movement, which will be dealt with specifically. Based on these fundamentals, typical VR phenomena and problems are discussed, such as double vision and cybersickness. Knowledge of human perception processes can be used to explain these phenomena and to derive solution strategies. Finally, this chapter shows how different limitations of human perception can be utilized to improve the quality and user experience during a VR session.

Dedicated website for additional material: vr-ar-book.org

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Barsky BA, Kosloff TJ (2008) Algorithms for rendering depth of field effects in computer graphics. In: Proceedings of 12th WSEAS international conference on computers, pp 999–1010

    Google Scholar 

  • Bruder G, Pusch A, Steinicke F (2012a) Analyzing effects of geometric rendering parameters on size and distance estimation in on-axis stereographic. In: Proceedings of ACM Symposium on Applied Perception (SAP 12), pp 111–118

    Chapter  Google Scholar 

  • Bruder G, Steinicke F, Wieland P, Lappe M (2012b) Tuning self-motion perception in virtual reality with visual illusions. IEEE Trans Vis Comput Graph 18(7):1068–1078

    Article  Google Scholar 

  • Card SK, Moran TP, Newell A (1986a) The model human processor: an engineering model of human performance. In: Handbook of perception and human performance. Vol. 2: cognitive processes and performance, pp 1–35

    Google Scholar 

  • Card SK, Moran TP, Newell A (1986b) The psychology of human–computer interaction. CRC Press

    Google Scholar 

  • Cater K, Chalmers A, Ward G (2003) Detail to attention: exploiting visual tasks for visual rendering. In: Proceedings of Eurographics workshop on rendering, pp 270–280

    Google Scholar 

  • Ernst MO (2008) Multisensory integration: a late bloomer. Curr Biol 18(12):R519–R521

    Article  Google Scholar 

  • Hagen MA, Elliott HB (1976) An investigation of the relationship between viewing conditions and preference for true and modified perspective with adults. J Exp Psychol Hum Percept Perform 5:479–490

    Article  Google Scholar 

  • Hayward V, Astley OR, Cruz-Hernandez M, Grant D, La-Torre GR-D (2004) Haptic interfaces and devices. Sens Rev 24(1):16–29

    Article  Google Scholar 

  • Hendrix C, Barfield W (1996) Presence within virtual environments as a function of visual display parameters. Presence Teleop Virt 5(3):274–289

    Article  Google Scholar 

  • Hoffmann DM, Girshick AR, Akeley K, Banks MS (2008) Vergence-accommodation conflicts hinder visual performance and cause visual fatigue. J Vis 8(3):1–30

    Article  Google Scholar 

  • Howard IP (2002) Seeing in depth: Vol. 1. Basic mechanisms. I Porteous, Toronto

    Google Scholar 

  • Interrante V, Anderson L, Ries B (2006) Distance perception in immersive virtual environments, revisited. In: Proceedings of IEEE virtual reality 2006, pp 3–10

    Google Scholar 

  • Itti L, Koch C, Niebur E (1998) A model of saliency-based visual attention for rapid scene analysis. IEEE Trans Pattern Anal Mach Intell 20:1254–1259

    Article  Google Scholar 

  • Kennedy RS, Lane NE, Berbaum KS, Lilienthal GS (1993) Simulator sickness questionnaire: an enhanced method for quantifying simulator sickness. International Journal of Aviation Psychology 3(3):203–220

    Article  Google Scholar 

  • Kubovy M (1986) The psychology of linear perspective and renaissance art. Cambridge University Press, Cambridge

    Google Scholar 

  • Kuhl SA, Thompson WB, Creem-Regehr SH (2006) Minification influences spatial judgement in immersive virtual environments. In: Symposium on applied perception in graphics and visualization, pp 15–19

    Chapter  Google Scholar 

  • Lappe M, Jenkin M, Harris LR (2007) Travel distance estimation from visual motion by leaky path integration. Exp Brain Res 180:35–48

    Article  Google Scholar 

  • Lawson B (2015) Motion sickness symptomatology and origins. In: Hale KS, Stanney KM (eds) Handbook of virtual environments: design, implementation, and applications. CRC Press, pp 532–587

    Google Scholar 

  • Le Meur O, Le Callet P, Barba D, Thoreau D (2006) A coherent computational approach to model the bottom-up visual attention. IEEE Trans Pattern Anal Mach Intell 28(5):802–817

    Article  Google Scholar 

  • Lee CH, Varshney A, Jacobs DW (2005) Mesh saliency. In: Proceedings of SIGGRAPH 2005, pp 659–666

    Google Scholar 

  • Loomis JM, Knapp JM (2003) Visual perception of egocentric distance in real and virtual environments. In: Hettinger LJ, Haas MW (eds) Virtual and adaptive environments. Erlbaum, Mahwah

    Google Scholar 

  • Malaka R, Butz A, HuĂźmann H (2009) Media informatics – an introduction. Pearson, Munich

    Google Scholar 

  • Marr D (1982) Vision: a computational investigation into the human representation and processing of visual information. MIT Press, Cambridge

    Google Scholar 

  • McCauley ME, Sharkey TJ (1992) Cybersickness: perception of self-motion in virtual environments. Presence Teleop Virt 1(3):311–318

    Article  Google Scholar 

  • Mendiburu B (2009) 3D movie making: stereoscopic digital cinema from script to screen. Focal Press, New York

    Google Scholar 

  • Mon-Williams M, Wann JP (1998) Binocular virtual reality displays: when problems do and don’t occur. Hum Factors 40(1):42–49

    Article  Google Scholar 

  • Myszkowski K (2002) Perception-based global illumination, rendering and animation techniques. In: Spring conference on computer graphics, pp 13–24

    Google Scholar 

  • Ooi TL, Wu B, He ZJ (2001) Distance determination by the angular declination below the horizon. Nature 414:197–200

    Article  Google Scholar 

  • Preim B, Dachselt R (2015) Interaktive Systeme (Band 2). Springer Vieweg, Berlin, Heidelberg

    Google Scholar 

  • Proffitt DR, Stefanucci J, Banton T, Epstein W (2003) The role of effort in distance perception. Psychol Sci 14:106–112

    Article  Google Scholar 

  • Riccio GE, Stoffregen TA (1991) An ecological theory of motion sickness and postural instability. Ecol Psychol 3(3):195–240

    Article  Google Scholar 

  • Sharp H, Preece J, Rogers Y (2019) Interaction design: beyond human–computer interaction. Wiley, Indianapolis

    Google Scholar 

  • Shneiderman B, Plaisant C, Cohen M, Jacobs S, Elmqvist N, Diakopoulos N (2018) Designing the user interface – strategies for effective human–computer interaction. Pearson Education Ltd, Harlow

    Google Scholar 

  • Simons DJ, Chabris CF (1999) Gorillas in our midst: sustained inattentional blindness for dynamic events. Perception 28(9):1059–1074

    Article  Google Scholar 

  • Slater M, Usoh M, Steed A (1994) Depth of presence in virtual environments. Presence Teleop Virt 3:130–144

    Article  Google Scholar 

  • Steinicke F, Bruder G, Kuhl S, Willemsen P, Lappe M, Hinrichs KH (2009) Judgment of natural perspective projections in head-mounted display environments. In: Proceedings of VRST 2009, pp 35–42

    Google Scholar 

  • Steinicke F, Bruder G, Jerald J, Frenz H, Lappe M (2010a) Estimation of detection thresholds for redirected walking techniques. IEEE Trans Vis Comput Graph 16(1):17–27

    Article  Google Scholar 

  • Steinicke F, Bruder G, Hinrichs KH, Steed A (2010b) Gradual transitions and their effects on presence and distance estimation. Comput Graph 34(1):26–33

    Article  Google Scholar 

  • Stone B (1993) Concerns raised about eye strain in VR systems. Real-Time Graph 2(4):1–13

    Google Scholar 

  • Treisman M (1977) Motion sickness: an evolutionary hypothesis. Science 197:493–495

    Article  Google Scholar 

  • Treisman AM, Gelade G (1980) A feature integration theory of attention. Cogn Psychol 12(1):97–136

    Article  Google Scholar 

  • Vishwanath D, Girshick AR, Banks MS (2005) Why pictures look right when viewed from the wrong place. Nat Neurosci 8(10):1401–1410

    Article  Google Scholar 

  • Wanger LR, Ferwander JA, Greenberg DA (1992) Perceiving spatial relationships in computer-generated images. IEEE Comput Graph Appl 12(3):44–58

    Article  Google Scholar 

  • Ware C (2000) Information visualization – perception for design. Morgan Kaufmann, San Francisco

    Google Scholar 

  • Ware C, Gobrecht C, Paton M (1998) Dynamic adjustment of stereo display parameters. IEEE Trans Syst Man Cybern 28(1):56–65

    Article  Google Scholar 

  • Williams SP, Parrish RV (1990) New computational control techniques and increased understanding for 3-D displays. In: Proceedings of SPIE Stereoscopic Display Applications, pp 73–82

    Chapter  Google Scholar 

  • Witmer BG, Singer MJ (1998) Measuring presence in virtual environments: a presence questionnaire. Presence: Teleoperators Virtual Environ 7(3):225–240

    Article  Google Scholar 

  • Witt JK, Proffitt DR, Epstein W (2004) Perceiving distance: a role of effort and intent. Perception 33:577–590

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ralf Doerner .

Editor information

Editors and Affiliations

Recommended Reading

The ACM Symposium on Applied Perception (SAP) as well as the journal Transaction on Applied Perception (TAP) deal with multisensory perception in virtual worlds.

Recommended Reading

  • Goldstein EB (2016) Sensation and Perception (10th edn). Cengage Learning, Belmont – Standard work from the psychology of perception which is not limited to visual perception. Very informative and with many examples.

  • Thompson WB, Fleming WF, Creem-Regehr SH, Stefanucci JK (2011) Visual Perception from a Computer Graphics Perspective. CRC Press, Boca Raton – Textbook which also explains essential aspects of perception for VR and always makes the connection to computer graphics.

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Doerner, R., Steinicke, F. (2022). Perceptual Aspects of VR. In: Doerner, R., Broll, W., Grimm, P., Jung, B. (eds) Virtual and Augmented Reality (VR/AR). Springer, Cham. https://doi.org/10.1007/978-3-030-79062-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-79062-2_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-79061-5

  • Online ISBN: 978-3-030-79062-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics