Skip to main content

Structure of Ferrites

  • Chapter
  • First Online:
Modern Ferrites in Engineering

Part of the book series: Topics in Mining, Metallurgy and Materials Engineering ((TMMME))

  • 404 Accesses

Abstract

This chapter discusses the main families of ferrites, spinel, and hexaferrites, as well as some of the other possible crystal structures displayed by these materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Faller JG, Birchenall CE (1970) The temperature dependence of ordering in magnesium ferrite. J Appl Crystallogr 3:496–503. https://doi.org/10.1107/S0021889870006751

    Article  CAS  Google Scholar 

  2. O’neill HSC (1992) Temperature dependence of the cation distribution in zinc ferrite (ZnFe2O4) from powder XRD structural refinements. Eur J Mineral 4:571–580. https://doi.org/10.1127/ejm/4/3/0571.

  3. Šepelák V, Becker KD (2004) Comparison of the cation inversion parameter of the nanoscale milled spinel ferrites with that of the quenched bulk materials. Mater Sci Eng A 375–377:861–864. https://doi.org/10.1016/j.msea.2003.10.178

  4. Šepelák V, Schultze D, Krumeich F, Steinike U, Becker K (2001) Mechanically induced cation redistribution in magnesium ferrite and its thermal stability. Solid State Ionics 141–142:677–682. https://doi.org/10.1016/S0167-2738(01)00777-9

    Article  Google Scholar 

  5. Dolcet P, Kirchberg K, Antonello A, Suchomski C, Marschall R, Diodati S, Muñoz-Espí R, Landfester K, Gross S (2019) Exploring wet chemistry approaches to ZnFe2O4 spinel ferrite nanoparticles with different inversion degrees: a comparative study. Inorg Chem Front 6:1527–1534. https://doi.org/10.1039/C9QI00241C

  6. Podwórny J (2015) Temperature dependence of the inversion degree in three-cation spinel solid solutions: experimental evaluation by XRD. Powder Diffr 30:S104–S110. https://doi.org/10.1017/S0885715615000093

    Article  CAS  Google Scholar 

  7. Gomes JA, Sousa MH, Tourinho FA, Mestnik-Filho J, Itri R, Depeyrot J (2005) Rietveld structure refinement of the cation distribution in ferrite fine particles studied by X-ray powder diffraction. J Magn Magn Mater 289:184–187. https://doi.org/10.1016/j.jmmm.2004.11.053

    Article  CAS  Google Scholar 

  8. Zampiva RYS, Kaufmann CG, Alves AK, Bergmann CP (2018) Influence of the fuel composition and the fuel/oxidizer ratio on the combustion solution synthesis of MgFe2O4 catalyst nanoparticles. FME Trans 46:157–164. https://doi.org/10.5937/fmet1802157Z

    Article  Google Scholar 

  9. Graves PR, Johnston C, Campaniello JJ (1988) Raman scattering in spinel structure ferrites. Mater Res Bull 23:1651–1660. https://doi.org/10.1016/0025-5408(88)90255-3

    Article  CAS  Google Scholar 

  10. Granone LI, Ulpe AC, Robben L, Klimke S, Jahns M, Renz F, Gesing TM, Bredow T, Dillert R, Bahnemann DW (2018) Effect of the degree of inversion on optical properties of spinel ZnFe 2 O 4. Phys Chem Chem Phys 20:28267–28278. https://doi.org/10.1039/C8CP05061A

    Article  CAS  Google Scholar 

  11. Venturini J, Zampiva RYS, Arcaro S, Bergmann CP (2018) Sol-gel synthesis of substoichiometric cobalt ferrite (CoFe2O4) spinels: influence of additives on their stoichiometry and magnetic properties. Ceram Int 44:12381–12388. https://doi.org/10.1016/J.CERAMINT.2018.04.026

    Article  CAS  Google Scholar 

  12. Avancini TG, Souza MT, de Oliveira APN, Arcaro S, Alves AK (2019) Magnetic properties of magnetite-based nano-glass-ceramics obtained from a Fe-rich scale and borosilicate glass wastes. Ceram Int 45:4360–4367. https://doi.org/10.1016/J.CERAMINT.2018.11.111

    Article  CAS  Google Scholar 

  13. Sawatzky GA, Van Der Woude F, Morrish AH (1969) Mössbauer study of several ferrimagnetic spinels. Phys Rev 187:747–757. https://doi.org/10.1103/PhysRev.187.747

    Article  CAS  Google Scholar 

  14. Venturini J, Tonelli AM, Wermuth TB, Zampiva RYS, Arcaro S, Da Cas Viegas A, Bergmann CP (2019) Excess of cations in the sol-gel synthesis of cobalt ferrite (CoFe2O4): A pathway to switching the inversion degree of spinels. J Magn Magn Mater 482:1–8. https://doi.org/10.1016/j.jmmm.2019.03.057

  15. Gul IH, Ahmed W, Maqsood AÃ (2008) Electrical and magnetic characterization of nanocrystalline Ni – Zn ferrite synthesis by co-precipitation route. J Magn Magn Mater 320:270–275. https://doi.org/10.1016/j.jmmm.2007.05.032

  16. Walters DS, Wirtz GP (1971) Kinetics of cation ordering in magnesium ferrite. J Am Ceram Soc 54:563–566. https://doi.org/10.1111/j.1151-2916.1971.tb12208.x

    Article  CAS  Google Scholar 

  17. Bliem R, McDermott E, Ferstl P, Setvin M, Gamba O, Pavelec J, Schneider MA, Schmid M, Diebold U, Blaha P, Hammer L, Parkinson GS (2014) Subsurface cation vacancy stabilization of the magnetite (001) surface. Science (80-. ):346. https://doi.org/10.1126/science.1260556.

  18. Aksel’rod EI, Alapin BG, Vishnevsky II, Sukharevsky BY (1971) Structural and phase relations in nonstoichiometric ferrites with oxygen deficiencies. J Phys Chem Solids 32:1627–1639. https://doi.org/10.1016/S0022-3697(71)80056-2

  19. Collongues R, Gourier D, Kahn-Harari A, Lejus AM, Thery J, Vivien D (1990) Magnetoplumbite-related oxides. Annu Rev Mater Sci 20:51–82. https://doi.org/10.1146/annurev.ms.20.080190.000411

  20. Pullar RC (2012) Hexagonal ferrites: a review of the synthesis, properties and applications of hexaferrite ceramics. Prog Mater Sci 57:1191–1334. https://doi.org/10.1016/j.pmatsci.2012.04.001

  21. Mariño-Castellanos PA, Moreno-Borges AC, Orozco-Melgar G, García JA, Govea-Alcaide E (2011) Structural and magnetic study of the Ti4+-doped barium hexaferrite ceramic samples: Theoretical and experimental results. Phys B Condens Matter 406:3130–3136. https://doi.org/10.1016/j.physb.2011.03.084

  22. Wartewig P, Krause MK, Esquinazi P, Rösler S, Sonntag R (1999) Magnetic properties of Zn- and Ti-substituted barium hexaferrite. J Magn Magn Mater 192:83–99. https://doi.org/10.1016/S0304-8853(98)00382-5

  23. Bai Y, Zhou J, Gui Z, Li L (2002) Magnetic properties of Cu, Zn-modified Co2Y hexaferrites. J Magn Magn Mater 246:140–144. https://doi.org/10.1016/S0304-8853(02)00040-9

  24. Tchouank Tekou Carol T, Mohammed J, Basandrai D, Godara SK, Bhadu GR, Mishra S, Aggarwal N, Narang SB, Srivastava AK (2020) X-band shielding of electromagnetic interference (EMI) by Co2Y barium hexaferrite, bismuth copper titanate (BCTO), and polyaniline (PANI) composite. J Magn Magn Mater 501:166433. https://doi.org/10.1016/j.jmmm.2020.166433

  25. Samaras D, Collomb A, Hadjivasiliou S, Achilleos C, Tsoukalas J, Pannetier J, Rodriguez J (1989) The rotation of the magnetization in the BaCo2Fe16O27 W-type hexagonal ferrite. J Magn Magn Mater 79:193–201. https://doi.org/10.1016/0304-8853(89)90098-X

  26. Mahmood SH, Al Sheyab Q, Bsoul I, Mohsen O, Awadallah A (2018) Structural and magnetic properties of Ga-substituted Co2−W hexaferrites. Curr Appl Phys 18:590–598. https://doi.org/10.1016/j.cap.2018.02.013

  27. Alizad Farzin Y, Mirzaee O, Ghasemi A (2014) Influence of Mg and Ni substitution on structural, microstructural and magnetic properties of Sr2Co2−xMgx/2Nix/2Fe12O22 (Co2Y) hexaferrite. J Magn Magn Mater 371:14–19. https://doi.org/10.1016/j.jmmm.2014.07.007

  28. Wu M, Gao X, Liu Z (2015) Field-dependent magnetoelectric effects in polycrystalline Co2Y-Type Ba0.5Sr1.5Co2(Fe1−xAlx)12O22 hexaferrites. J Am Ceram Soc 98:2498–2502. https://doi.org/10.1111/jace.13637

  29. Vinaykumar R, Jyoti J (2018) Bera, characterization of La-Zn substituted Co2Y hexagonal ferrite. J Electron Mater 47:5959–5964. https://doi.org/10.1007/s11664-018-6486-0

    Article  CAS  Google Scholar 

  30. Dixit V, Kim S-G, Park J, Hong Y-K (2017) Effect of ionic substitutions on the magnetic properties of strontium hexaferrite: a first principles study. AIP Adv 7:115209. https://doi.org/10.1063/1.4995309

  31. Komandin GA, Prokhorov AS, Torgashev VI, Zhukova ES, Gorshunov BP, Bush AA (2011) Polarization modes in the Ba2Mg2Fe12O22 multiferroic. Phys Solid State 53:736. https://doi.org/10.1134/S1063783411040202

    Article  CAS  Google Scholar 

  32. Pullar RC (2014) Multiferroic and magnetoelectric hexagonal ferrites BT—Mesoscopic phenomena in multifunctional materials: synthesis, characterization, modeling and applications. In: Saxena A, Planes A (eds), Springer Berlin Heidelberg, Berlin, Heidelberg, pp 159–200. https://doi.org/10.1007/978-3-642-55375-2_7.

  33. Wu J, Shi Z, Xu J, Li N, Zheng Z, Geng H, Xie Z, Zheng L (2012) Synthesis and room temperature four-state memory prototype of Sr3Co2Fe24O41 multiferroics. ApplPhys Lett 101:122903. https://doi.org/10.1063/1.4753973

  34. Park J-G, Le MD, Jeong J, Lee S (2014) Structure and spin dynamics of multiferroic BiFeO3. J PhysCondens Matter 26:433202. https://doi.org/10.1088/0953-8984/26/43/433202

  35. Lebeugle D, Colson D, Forget A, Viret M (2007) Very large spontaneous electric polarization in BiFeO3 single crystals at room temperature and its evolution under cycling fields. Appl Phys Lett 91:22907. https://doi.org/10.1063/1.2753390

  36. Dho J, Qi X, Kim H, MacManus-Driscoll JL, Blamire MG (2006) Large electric polarization and exchange bias in multiferroic BiFeO3. Adv Mater 18:1445–1448. https://doi.org/10.1002/adma.200502622

    Article  CAS  Google Scholar 

  37. Allibe J, Fusil S, Bouzehouane K, Daumont C, Sando D, Jacquet E, Deranlot C, Bibes M, Barthélémy A (2012) Room temperature electrical manipulation of giant magnetoresistance in spin valves exchange-biased with BiFeO3. Nano Lett 12:1141–1145. https://doi.org/10.1021/nl202537y

  38. Zhang X, Wang YH, Zhang DL, Zhang GQ, Yang HL, Miao J, Xu XG, Jiang Y (2011) Electric-field-induced change of the magnetoresistance in the multiferroic spin-valve based on ${\hbox {BiFeO}}_{3}$ Film. IEEE Trans Magn 47:3139–3142. https://doi.org/10.1109/TMAG.2011.2148102

  39. Jiang SP (2002) A comparison of O2 reduction reactions on porous (La,Sr)MnO3 and (La,Sr)(Co,Fe)O3 electrodes. Solid State Ionics 146:1–22. https://doi.org/10.1016/S0167-2738(01)00997-3

  40. Jiang SP (2019) Development of lanthanum strontium cobalt ferrite perovskite electrodes of solid oxide fuel cells – A review. Int J Hydrogen Energy 44:7448–7493. https://doi.org/10.1016/j.ijhydene.2019.01.212

  41. Lubini M, Chinarro E, Moreno B, Jurado JR, de Sousa VC, Alves AK, Ribeiro JLD, Bergmann CP (2017) Electrochemical characteristics of La0.6Sr0.4Co1−yFeyO3 (y=0.2–1.0) fiber cathodes. Ceram Int 43:8715–8720. https://doi.org/10.1016/j.ceramint.2017.04.002

  42. Barrón JF, Montiel H, Gómez-Vidales V, Conde-Gallardo A, Alvarez G (2017) YIG films through synthesis by means of the polymeric precursor method: correlation between the structural and vibrational properties with magnetic behavior. J Supercond Nov Magn 30:2515–2522. https://doi.org/10.1007/s10948-017-4020-x

  43. Cherepanov V, Kolokolov I, L’vov V (1993) The saga of YIG: spectra, thermodynamics, interaction and relaxation of magnons in a complex magnet. Phys Rep 229:81–144. https://doi.org/10.1016/0370-1573(93)90107-O

  44. Qin H, Both G-J, Hämäläinen SJ, Yao L, van Dijken S (2018) Low-loss YIG-based magnonic crystals with large tunable bandgaps. Nat Commun 9:5445. https://doi.org/10.1038/s41467-018-07893-5

  45. Bhoi B, Cliff T, Maksymov IS, Kostylev M, Aiyar R, Venkataramani N, Prasad S, Stamps RL (2014) Study of photon–magnon coupling in a YIG-film split-ring resonant system. J Appl Phys 116:243906. https://doi.org/10.1063/1.4904857

  46. Bhoi B, Kim B, Kim J, Cho Y-J, Kim S-K (2017) Robust magnon-photon coupling in a planar-geometry hybrid of inverted split-ring resonator and YIG film. Sci Rep 7:11930. https://doi.org/10.1038/s41598-017-12215-8

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Arcaro, S., Venturini, J. (2021). Structure of Ferrites. In: Modern Ferrites in Engineering. Topics in Mining, Metallurgy and Materials Engineering. Springer, Cham. https://doi.org/10.1007/978-3-030-78988-6_2

Download citation

Publish with us

Policies and ethics