Skip to main content

Concurrency Theorems for Non-linear Rewriting Theories

  • Conference paper
  • First Online:
Book cover Graph Transformation (ICGT 2021)

Abstract

Sesqui-pushout (SqPO) rewriting along non-linear rules and for monic matches is well-known to permit the modeling of fusing and cloning of vertices and edges, yet to date, no construction of a suitable concurrency theorem was available. The lack of such a theorem, in turn, rendered compositional reasoning for such rewriting systems largely infeasible. We develop in this paper a suitable concurrency theorem for non-linear SqPO-rewriting in categories that are quasi-topoi (subsuming the example of adhesive categories) and with matches required to be regular monomorphisms of the given category. Our construction reveals an interesting “backpropagation effect” in computing rule compositions. We derive in addition a concurrency theorem for non-linear double pushout (DPO) rewriting in rm-adhesive categories. Our results open non-linear SqPO and DPO semantics to the rich static analysis techniques available from concurrency, rule algebra and tracelet theory.

An extended version of this paper containing additional technical appendices is available online [7].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In this paper, we follow the conventions of compositional rewriting theory [9], i.e., we speak of “input”/“output” motifs of rules, as opposed to “left”/“right” motifs in the traditional literature [22].

  2. 2.

    Some authors prefer to not consider directly the category \(\mathbf {BRel}\), but rather define \(\mathbf {SGraph}\) as some category equivalent to \(\mathbf {BRel}\), where simple graphs are of the form \(\langle V,E\rangle \) with \(E\subseteq V\times V\). This is evidently equivalent to directly considering \(\mathbf {BRel}\), whence we chose to not make this distinction in this paper.

  3. 3.

    As demonstrated in [26, Fact 3.4], every finitary \(\mathcal {M}\)-adhesive category \(\mathbf{C}\) possesses an (extremal \(\mathcal {E}\), \(\mathcal {M}\))-factorization, so if \(\mathbf{C}\) is known to possess FPCs as required by the construction, this might allow to generalize the \(\mathcal {M}\)-FPC-PO-augmentation construction to this setting.

  4. 4.

    Note that square (1) pasted with the pullback square formed by the morphisms \(\overline{\alpha }, id_B,e,e\circ \bar{\alpha }\) yields a pullback square that is indeed of the right form to warrant the existence of a morphism n into the FPC square \((1)\,+\,(2)\).

  5. 5.

    Note that this part of the definition of general SqPO-semantics coincides precisely with the original definition of [17].

  6. 6.

    Note that we have drawn the rule from right to left so that the input, sometimes called the left-hand side, of the rule is the topmost rightmost graph. Note also that the structure of the homomorphisms may be inferred from the node positions, with the exception of the vertex clonings that are explicitly mentioned in the text.

References

  1. Adamek, J., Herrlich, H., Strecker, G.: Abstract and concrete categories: the joy of cats. Reprints Theory Appl. Categ. (17), 1–507 (2006). http://www.tac.mta.ca/tac/reprints/articles/17/tr17.pdf

  2. Behr, N.: Sesqui-pushout rewriting: concurrency, associativity and rule algebra framework. In: Proceedings of GCM 2019. EPTCS, vol. 309, pp. 23–52 (2019). https://doi.org/10.4204/eptcs.309.2

  3. Behr, N.: Tracelets and tracelet analysis of compositional rewriting systems. In: Proceedings of ACT 2019. EPTCS, vol. 323, pp. 44–71 (2020). https://doi.org/10.4204/EPTCS.323.4

  4. Behr, N.: On stochastic rewriting and combinatorics via rule-algebraic methods. In: Proceedings of TERMGRAPH 2020, vol. 334, pp. 11–28 (2021). https://doi.org/10.4204/eptcs.334.2

  5. Behr, N., Danos, V., Garnier, I.: Stochastic mechanics of graph rewriting. In: Proceedings of LiCS 2016. ACM Press (2016). https://doi.org/10.1145/2933575.2934537

  6. Behr, N., Danos, V., Garnier, I.: Combinatorial conversion and moment bisimulation for stochastic rewriting systems. LMCS 16(3), 3:1–3:45 (2020). https://lmcs.episciences.org/6628

  7. Behr, N., Harmer, R., Krivine, J.: Concurrency theorems for non-linear rewriting theories (long version). CoRR (2021). https://arxiv.org/abs/2105.02842

  8. Behr, N., Krivine, J.: Rewriting theory for the life sciences: a unifying theory of CTMC semantics. In: Gadducci, F., Kehrer, T. (eds.) ICGT 2020. LNCS, vol. 12150, pp. 185–202. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-51372-6_11

    Chapter  Google Scholar 

  9. Behr, N., Krivine, J.: Compositionality of rewriting rules with conditions. Compositionality 3, 2 (2021). https://doi.org/10.32408/compositionality-3-2

    Article  Google Scholar 

  10. Behr, N., Sobocinski, P.: Rule algebras for adhesive categories (extended journal version). LMCS 16(3), 2:1–2:38 (2020). https://lmcs.episciences.org/6615

  11. Bonifati, A., Furniss, P., Green, A., Harmer, R., Oshurko, E., Voigt, H.: Schema validation and evolution for graph databases. In: Laender, A.H.F., Pernici, B., Lim, E.-P., de Oliveira, J.P.M. (eds.) ER 2019. LNCS, vol. 11788, pp. 448–456. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-33223-5_37

    Chapter  Google Scholar 

  12. Bousquet-Mélou, M.: Counting planar maps, coloured or uncoloured. London Mathematical Society Lecture Note Series. Cambridge University Press, pp. 1–50 (2011). https://doi.org/10.1017/CBO9781139004114.002

  13. Boutillier, P., et al.: The Kappa platform for rule-based modeling. Bioinformatics 34(13), i583–i592 (2018). https://doi.org/10.1093/bioinformatics/bty272

    Article  Google Scholar 

  14. Braatz, B., Golas, U., Soboll, T.: How to delete categorically—two pushout complement constructions. J. Symb. Comput. 46(3), 246–271 (2011). https://doi.org/10.1016/j.jsc.2010.09.007

    Article  MathSciNet  MATH  Google Scholar 

  15. Cockett, J., Lack, S.: Restriction categories I: categories of partial maps. Theor. Comput. Sci. 270(1), 223–259 (2002). https://doi.org/10.1016/S0304-3975(00)00382-0

    Article  MathSciNet  MATH  Google Scholar 

  16. Cockett, J., Lack, S.: Restriction categories II: partial map classification. Theor. Comput. Sci. 294(1), 61–102 (2003). https://doi.org/10.1016/S0304-3975(01)00245-6

    Article  MathSciNet  MATH  Google Scholar 

  17. Corradini, A., Heindel, T., Hermann, F., König, B.: Sesqui-pushout rewriting. In: Corradini, A., Ehrig, H., Montanari, U., Ribeiro, L., Rozenberg, G. (eds.) ICGT 2006. LNCS, vol. 4178, pp. 30–45. Springer, Heidelberg (2006). https://doi.org/10.1007/11841883_4

    Chapter  Google Scholar 

  18. Corradini, A., Duval, D., Echahed, R., Prost, F., Ribeiro, L.: AGREE – algebraic graph rewriting with controlled embedding. In: Parisi-Presicce, F., Westfechtel, B. (eds.) ICGT 2015. LNCS, vol. 9151, pp. 35–51. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21145-9_3

    Chapter  MATH  Google Scholar 

  19. Danos, V., Heindel, T., Honorato-Zimmer, R., Stucki, S.: Reversible Sesqui-pushout rewriting. In: Giese, H., König, B. (eds.) ICGT 2014. LNCS, vol. 8571, pp. 161–176. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-09108-2_11

    Chapter  Google Scholar 

  20. Diers, Y.: Familles universelles de morphismes, Publications de l’U.E.R. mathématiques pures et appliquées, vol. 145. Université des sciences et techniques de Lille I (1978)

    Google Scholar 

  21. Dyckhoff, R., Tholen, W.: Exponentiable morphisms, partial products and pullback complements. J. Pure Appl. Algebra 49(1–2), 103–116 (1987)

    Article  MathSciNet  Google Scholar 

  22. Ehrig, H., et al.: Fundamentals of Algebraic Graph Transformation. Monographs in Theoretical Computer Science. Springer, Heidelberg (2006). https://doi.org/10.1007/3-540-31188-2

  23. Ehrig, H., Golas, U., Hermann, F.: Categorical frameworks for graph transformation and HLR systems based on the DPO approach. Bull. EATCS 102, 111–121 (2010)

    MathSciNet  MATH  Google Scholar 

  24. Ehrig, H., Habel, A., Padberg, J., Prange, U.: Adhesive high-level replacement categories and systems. In: Ehrig, H., Engels, G., Parisi-Presicce, F., Rozenberg, G. (eds.) ICGT 2004. LNCS, vol. 3256, pp. 144–160. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30203-2_12

    Chapter  Google Scholar 

  25. Ehrig, H., et al.: \(\cal{M}\)-adhesive transformation systems with nested application conditions. Part 1: parallelism, concurrency and amalgamation. MSCS 24(04), 1–48 (2014). https://doi.org/10.1017/s0960129512000357

  26. Braatz, B., Ehrig, H., Gabriel, K., Golas, U.: Finitary \(\cal{M}\)-adhesive categories. In: Ehrig, H., Rensink, A., Rozenberg, G., Schürr, A. (eds.) ICGT 2010. LNCS, vol. 6372, pp. 234–249. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15928-2_16

    Chapter  Google Scholar 

  27. Garner, R., Lack, S.: On the axioms for adhesive and quasiadhesive categories. TAC 27(3), 27–46 (2012)

    MathSciNet  MATH  Google Scholar 

  28. Harmer, R., Le Cornec, Y.S., Légaré, S., Oshurko, E.: Bio-curation for cellular signalling: the kami project. IEEE/ACM Trans. Comput. Biol. Bioinform. 16(5), 1562–1573 (2019). https://doi.org/10.1109/TCBB.2019.2906164

    Article  Google Scholar 

  29. Harmer, R., Oshurko, E.: Knowledge representation and update in hierarchies of graphs. JLAMP 114, 100559 (2020)

    MathSciNet  MATH  Google Scholar 

  30. Harmer, R., Oshurko, E.: Reversibility and composition of rewriting in hierarchies. EPTCS 330, 145–162 (2020). https://doi.org/10.4204/eptcs.330.9

    Article  MATH  Google Scholar 

  31. Heindel, T.: Hereditary pushouts reconsidered. In: Ehrig, H., Rensink, A., Rozenberg, G., Schürr, A. (eds.) ICGT 2010. LNCS, vol. 6372, pp. 250–265. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15928-2_17

    Chapter  Google Scholar 

  32. Johnstone, P.T.: Sketches of an Elephant - A Topos Theory Compendium, vol. 1. Oxford University Press, Oxford (2002)

    MATH  Google Scholar 

  33. Johnstone, P.T., Lack, S., Sobociński, P.: Quasitoposes, quasiadhesive categories and artin glueing. In: Mossakowski, T., Montanari, U., Haveraaen, M. (eds.) CALCO 2007. LNCS, vol. 4624, pp. 312–326. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-73859-6_21

    Chapter  MATH  Google Scholar 

  34. Lack, S., Sobociński, P.: Adhesive categories. In: Walukiewicz, I. (ed.) FoSSaCS 2004. LNCS, vol. 2987, pp. 273–288. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24727-2_20

    Chapter  Google Scholar 

  35. Lack, S., Sobociński, P.: Adhesive and quasiadhesive categories. RAIRO - Theor. Inform. Appl. 39(3), 511–545 (2005). https://doi.org/10.1051/ita:2005028

    Article  MathSciNet  MATH  Google Scholar 

  36. Löwe, M.: Polymorphic Sesqui-pushout graph rewriting. In: Parisi-Presicce, F., Westfechtel, B. (eds.) ICGT 2015. LNCS, vol. 9151, pp. 3–18. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21145-9_1

    Chapter  MATH  Google Scholar 

  37. Monro, G.: Quasitopoi, logic and heyting-valued models. J. Pure Appl. Algebra 42(2), 141–164 (1986). https://doi.org/10.1016/0022-4049(86)90077-0

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolas Behr .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Behr, N., Harmer, R., Krivine, J. (2021). Concurrency Theorems for Non-linear Rewriting Theories. In: Gadducci, F., Kehrer, T. (eds) Graph Transformation. ICGT 2021. Lecture Notes in Computer Science(), vol 12741. Springer, Cham. https://doi.org/10.1007/978-3-030-78946-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-78946-6_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-78945-9

  • Online ISBN: 978-3-030-78946-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics