Skip to main content

A Virtual Sensor for a Cell Voltage Prediction of a Proton-Exchange Membranes Based on Intelligent Techniques

  • Conference paper
  • First Online:
Sustainable Smart Cities and Territories (SSCTIC 2021)

Abstract

The use of Proton-Exchange Membranes Fuel Cells is presented as a key alternative to face the increasing and concerning problems related to global warming. The international expansion of green policies, has resulted in the need of ensuring their quality and reliability performance. Although fuel cells can get to play a significant role, this technology is still under development, paying special attention to the problems related to gas starvation and degradation. In this context, the present work deals with the virtual sensor implementation of one of the voltage cells present in a stack, whose operation is subjected to several degradation cycles. The proposal predicts indirectly the voltage of one cell from the current state of the rest of the cells by means of an intelligent model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Alaiz-Moreton, H., Fernández-Robles, L., Alfonso-Cendón, J., Castejón-Limas, M., Sánchez-González, L., Pérez, H.: Data mining techniques for the estimation of variables in health-related noisy data. In: Pérez García, H., Alfonso-Cendón, J., Sánchez González, L., Quintián, H., Corchado, E. (eds.) SOCO/CISIS/ICEUTE -2017. AISC, vol. 649, pp. 482–491. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-67180-2_47

    Chapter  Google Scholar 

  2. Alaiz-Moretón, H., et al.: Bioinspired hybrid model to predict the hydrogen inlet fuel cell flow change of an energy storage system. Processes 7(11), 825 (2019)

    Google Scholar 

  3. Barreras, F., Lozano, A., Roda, V., Barroso, J., Martín, J.: Optimal design and operational tests of a high-temperature PEM fuel cell for a combined heat and power unit. Int. J. Hydrogen Energy 39(10), 5388–5398 (2014)

    Article  Google Scholar 

  4. Baruque, B., Porras, S., Jove, E., Calvo-Rolle, J.L.: Geothermal heat exchanger energy prediction based on time series and monitoring sensors optimization. Energy 171, 49–60 (2019)

    Article  Google Scholar 

  5. Casteleiro-Roca, J.L., Barragán, A.J., Segura, F., Calvo-Rolle, J.L., Andújar, J.M.: Fuel cell output current prediction with a hybrid intelligent system. Complexity 2019, Article ID 6317270 (2019)

    Google Scholar 

  6. Casteleiro-Roca, J.L., Gómez-González, J.F., Calvo-Rolle, J.L., Jove, E., Quintián, H., Gonzalez Diaz, B., Mendez Perez, J.A.: Short-term energy demand forecast in hotels using hybrid intelligent modeling. Sensors 19(11), 2485 (2019)

    Article  Google Scholar 

  7. Casteleiro-Roca, J.L., Javier Barragan, A., Segura, F., Luis Calvo-Rolle, J., Manuel Andujar, J.: Intelligent hybrid system for the prediction of the voltage-current characteristic curve of a hydrogen-based fuel cell. Revista Iberoamericana de Automática e Informática Industrial 16(4), 492–501 (2019)

    Article  Google Scholar 

  8. Casteleiro-Roca, J.L., Jove, E., Sánchez-Lasheras, F., Méndez-Pérez, J.A., Calvo-Rolle, J.L., de Cos Juez, F.J.: Power cell SOC modelling for intelligent virtual sensor implementation. J. Sensors 2017, Article ID 9640546 (2017)

    Google Scholar 

  9. Chen, Y.S., Yang, C.W., Lee, J.Y.: Implementation and evaluation for anode purging of a fuel cell based on nitrogen concentration. Appl. Energy 113, 1519–1524 (2014)

    Article  Google Scholar 

  10. Chukwuka, C., Folly, K.: Batteries and super-capacitors. In: Power Engineering Society Conference and Exposition in Africa (PowerAfrica). IEEE, pp. 1–6, July 2012. https://doi.org/10.1109/PowerAfrica.2012.6498634

  11. Fernández-Serantes, L.A., Estrada Vázquez, R., Casteleiro-Roca, J.L., Calvo-Rolle, J.L., Corchado, E.: Hybrid intelligent model to predict the SOC of a LFP power cell type. In: Polycarpou, M., de Carvalho, A.C.P.L.F., Pan, J.-S., Woźniak, M., Quintian, H., Corchado, E. (eds.) HAIS 2014. LNCS (LNAI), vol. 8480, pp. 561–572. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-07617-1_49

    Chapter  Google Scholar 

  12. González, S., Sedano, J., Villar, J.R., Corchado, E., Herrero, Á., Baruque, B.: Features and models for human activity recognition. Neurocomputing 167, 52–60 (2015). https://doi.org/10.1016/j.neucom.2015.01.082

  13. Jove, E., Aláiz-Moretón, H., Casteleiro-Roca, J.L., Corchado, E., Calvo-Rolle, J.L.: Modeling of bicomponent mixing system used in the manufacture of wind generator blades. In: Corchado, E., Lozano, J.A., Quintián, H., Yin, H. (eds.) IDEAL 2014. LNCS, vol. 8669, pp. 275–285. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10840-7_34

    Chapter  Google Scholar 

  14. Jove, E., et al.: Missing data imputation over academic records of electrical engineering students. Logic J. IGPL 28(4), 487–501 (2020)

    Article  MathSciNet  Google Scholar 

  15. Jove, E., Casteleiro-Roca, J.L., Quintián, H., Méndez-Pérez, J.A., Calvo-Rolle, J.L.: A fault detection system based on unsupervised techniques for industrial control loops. Expert Syst. 36(4), e12395 (2019)

    Article  Google Scholar 

  16. Jove, E., Casteleiro-Roca, J.L., Quintián, H., Méndez-Pérez, J.A., Calvo-Rolle, J.L.: Virtual sensor for fault detection, isolation and data recovery for bicomponent mixing machine monitoring. Informatica 30(4), 671–687 (2019)

    Article  Google Scholar 

  17. Jove, E., Casteleiro-Roca, J.L., Quintián, H., Méndez-Pérez, J.A., Calvo-Rolle, J.L.: A new method for anomaly detection based on non-convex boundaries with random two-dimensional projections. Inf. Fusion 65, 50–57 (2021)

    Article  Google Scholar 

  18. Jove, E., Casteleiro-Roca, J.L., Quintián, H., Simić, D., Méndez-Pérez, J.A., Luis Calvo-Rolle, J.: Anomaly detection based on one-class intelligent techniques over a control level plant. Logic J. IGPL 28(4), 502–518 (2020)

    Article  MathSciNet  Google Scholar 

  19. Jove, E., Casteleiro-Roca, J.L., Quintián, H., Zayas-Gato, F., Vercelli, G., Calvo-Rolle, J.L.: A one-class classifier based on a hybrid topology to detect faults in power cells. Logic Journal of the IGPL (2021)

    Google Scholar 

  20. Kaltschmitt, M., Streicher, W., Wiese, A.: Renewable Energy. Springer, Heidelberg (2007)

    Google Scholar 

  21. Niakolas, D.K., Daletou, M., Neophytides, S.G., Vayenas, C.G.: Fuel cells are a commercially viable alternative for the production of “clean” energy. Ambio 45(1), 32–37 (2016)

    Google Scholar 

  22. Park, J., Oh, H., Ha, T., Lee, Y.I., Min, K.: A review of the gas diffusion layer in proton exchange membrane fuel cells: durability and degradation. Appl. Energy 155, 866–880 (2015)

    Article  Google Scholar 

  23. Pinzón, C., de Paz, J.F., Bajo, J., Herrero, Á., Corchado, E.: AIIDA-SQL: an adaptive intelligent intrusion detector agent for detecting SQL injection attacks. In: 10th International Conference on Hybrid Intelligent Systems (HIS 2010), Atlanta, 23–25 August 2010, pp. 73–78 (2010). https://doi.org/10.1109/HIS.2010.5600026

  24. Quintián, H., Corchado, E.: Beta Hebbian learning as a new method for exploratory projection pursuit. Int. J. Neural Syst. 27(06), 1750024 (2017)

    Article  Google Scholar 

  25. Quintián, H., Corchado, E.: Beta scale invariant map. Eng. Appl. Artif. Intell. 59, 218–235 (2017)

    Article  Google Scholar 

  26. Rosli, R., Sulong, A., Daud, W., Zulkifley, M., Husaini, T., Rosli, M., Majlan, E., Haque, M.: A review of high-temperature proton exchange membrane fuel cell (HT-PEMFC) system. Int. J. Hydrogen Energy 42(14), 9293–9314 (2017)

    Article  Google Scholar 

  27. Sebastián, D., Baglio, V.: Advanced materials in polymer electrolyte fuel cells (2017)

    Google Scholar 

  28. Contribution of Working Group Team: Contribution of working groups i, ii and iii to the fourth assessment report of the intergovernmental panel on climate change. In: IPCC 2007: Climate Change 2007: Synthesis Report 104 (2007)

    Google Scholar 

  29. Wasserman, P.: Advanced Methods in Neural Computing, 1st edn. Wiley, New York (1993)

    MATH  Google Scholar 

  30. Zhang, L., Chae, S.R., Hendren, Z., Park, J.S., Wiesner, M.R.: Recent advances in proton exchange membranes for fuel cell applications. Chem. Eng. J. 204, 87–97 (2012)

    Article  Google Scholar 

Download references

Acknowledgements

CITIC, as a Research Center of the University System of Galicia, is funded by Consellería de Educación, Universidade e Formación Profesional of the Xunta de Galicia through the European Regional Development Fund (ERDF) and the Secretaría Xeral de Universidades (Ref. ED431G 2019/01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Esteban Jove .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jove, E., Lozano, A., Manso, Á.P., Barreras, F., Costa-Castelló, R., Calvo-Rolle, J.L. (2022). A Virtual Sensor for a Cell Voltage Prediction of a Proton-Exchange Membranes Based on Intelligent Techniques. In: Corchado, J.M., Trabelsi, S. (eds) Sustainable Smart Cities and Territories. SSCTIC 2021. Lecture Notes in Networks and Systems, vol 253. Springer, Cham. https://doi.org/10.1007/978-3-030-78901-5_21

Download citation

Publish with us

Policies and ethics