Skip to main content

IoT-Based Human Fall Detection Solution Using Morlet Wavelet

  • Conference paper
  • First Online:
Sustainable Smart Cities and Territories (SSCTIC 2021)

Abstract

Human fall detection is a problem that needs to be addressed to decrease the significant number of elderly people being affected, disabled, or even killed by falls. While the prevention of falls is a goal harder, or impossible, to be achieved, the fast detection and aid of people are two aspects that technological solutions can help with. With the support of internet of things devices, a fall detection solution for building deployment is proposed in this paper. The classification of fall is done using the Morlet wavelet in the fog-computing layer, enabling the detection of falls near the person and near the people who can provide first aid. The proposed solution of this paper was tested using a new dataset created using a human-body model. The results are promising, proving the efficiency of the proposed solution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. WHO: Falls (2020). https://www.who.int/news-room/fact-sheets/detail/falls. Accessed 02 Nov 2020

  2. DGS: Plano Nacional para a Segurança dos Doentes 2015–2020 (2015). https://www.dgs.pt/qualidade-e-seguranca/seguranca-dos-doentes.aspx. Accessed 02 Nov 2020

  3. DGS: Portugal Idade Maior em Números - 2014: A Saúde da População Portuguesa com 65 ou mais anos de idade (Tech. Rep.). Direção-Geral da Saúde (2014). https://www.dgs.pt/estatisticas-de-saude/estatisticas-de-saude/publicacoes/portugal-idade-maior-em-numeros-2014-pdf.aspx. Accessed 02 Nov 2020

  4. INE: Mantém-se o agravamento do envelhecimento demográfico, em Portugal, que só tenderá a estabilizar daqui a cerca de 40 anos (Tech. Rep.). Instituto Nacional de Estatística (2017). https://www.ine.pt/xportal/xmain?xpid=INE&xpgid=ine_destaques&DESTAQUESdest_boui=277695619&DESTAQUESmodo=2&xlang=pt. Accessed 02 Nov 2020

  5. Luís Carvalho, P. B., Cruz, S.: Escala de Quedas de Morse-Manual de utilização (2015). https://www.esenf.pt/fotos/editor2/i_d/publicacoes/978-989-98443-8-4.pdf. Accessed 02 Nov 2020

  6. Morse, J.M.: Preventing Patient Falls. Springer Pub (2008)

    Google Scholar 

  7. Rajagopalan, R., Litvan, I., Jung, T.P.: Fall prediction and prevention systems: recent trends, challenges, and future research directions. Sensors (Switzerland) (2017). https://doi.org/10.3390/s17112509

    Article  Google Scholar 

  8. Pang, I., Okubo, Y., Sturnieks, D., Lord, S.R., Brodie, M.A.: Detection of near falls using wearable devices: a systematic review. J. Geriatr. Phys. Ther. (2019). https://doi.org/10.1519/JPT.0000000000000181

    Article  Google Scholar 

  9. Mozaffari, N., Rezazadeh, J., Farahbakhsh, R., Yazdani, S., Sandrasegaran, K.: Practical fall detection based on IoT technologies: a survey. Internet of Things (2019). https://doi.org/10.1016/j.iot.2019.100124

    Article  Google Scholar 

  10. Bet, P., Castro, P.C., Ponti, M.A.: Fall detection and fall risk assessment in older person using wearable sensors: a systematic review. Int. J. Med. Inform. (2019). https://doi.org/10.1016/j.ijmedinf.2019.08.006

    Article  Google Scholar 

  11. Ramachandran, A., Karuppiah, A.: A survey on recent advances in wearable fall detection systems. Biomed. Res. Int. (2020). https://doi.org/10.1155/2020/2167160

    Article  Google Scholar 

  12. Vallabh, P., Malekian, R.: Fall detection monitoring systems: a comprehensive review. J. Ambient. Intell. Humaniz. Comput. 9(6), 1809–1833 (2017). https://doi.org/10.1007/s12652-017-0592-3

    Article  Google Scholar 

  13. Chaccour, K., Darazi, R., El Hassani, A.H., Andres, E.: From fall detection to fall prevention: a generic classification of fall-related systems. IEEE Sens. J. (2017). https://doi.org/10.1109/JSEN.2016.2628099

    Article  Google Scholar 

  14. Nadeem, A., Mehmood, A., Rizwan, K.: A dataset build using wearable inertial measurement and ECG sensors for activity recognition, fall detection and basic heart anomaly detection system. Data Brief 27, 104717 (2019). https://doi.org/10.1016/j.dib.2019.104717

  15. Espinosa, R., Ponce, H., Gutiérrez, S., Martínez-Villaseñor, L., Brieva, J., Moya-Albor, E.: A vision-based approach for fall detection using multiple cameras and convolutional neural networks: a case study using the UP-Fall detection dataset. Comput. Biol. Med. (2019). https://doi.org/10.1016/j.compbiomed.2019.103520

    Article  Google Scholar 

  16. Salman Khan, M., Yu, M., Feng, P., Wang, L., Chambers, J.: An unsupervised acoustic fall detection system using source separation for sound interference suppression. Signal Proc. 110, 199–210 (2015). https://doi.org/10.1016/j.sigpro.2014.08.021

  17. Yacchirema, D., De Puga, J.S., Palau, C., Esteve, M.: Fall detection system for elderly people using IoT and Big Data. Procedia Comput. Sci. (2018). https://doi.org/10.1016/j.procs.2018.04.110

    Article  Google Scholar 

  18. Aziz, O., et al.: Validation of accuracy of SVM-based fall detection system using real-world fall and non-fall datasets. PLoS ONE (2017). https://doi.org/10.1371/journal.pone.0180318

    Article  Google Scholar 

  19. Ajerla, D., Mahfuz, S., Zulkernine, F.: A real-time patient monitoring framework for fall detection. Wirel. Commun. Mob. Comput. (2019). https://doi.org/10.1155/2019/9507938

  20. De Miguel, K., Brunete, A., Hernando, M., Gambao, E.: Home camera-based fall detection system for the elderly. Sensors (Switzerland) (2017). https://doi.org/10.3390/s17122864

    Article  Google Scholar 

  21. Lu, N., Wu, Y., Feng, L., Song, J.: Deep learning for fall detection: three-dimensional CNN combined with LSTM on video kinematic data. IEEE J. Biomed. Health Inform. (2019). https://doi.org/10.1109/JBHI.2018.2808281

    Article  Google Scholar 

  22. Wang, Y., Wu, K., Ni, L.M.: WiFall: device-free fall detection by wireless networks. IEEE Trans. Mob. Comput. (2017). https://doi.org/10.1109/TMC.2016.2557792

    Article  Google Scholar 

  23. Casilari, E., Santoyo-Ramón, J.A., Cano-García, J.M.: Analysis of public datasets for wearable fall detection systems. Sensors (Switzerland) (2017). https://doi.org/10.3390/s17071513

    Article  Google Scholar 

  24. Casilari, E., Santoyo-Ramón, J.A., Cano-García, J.M.: UMAFall: a multisensor dataset for the research on automatic fall detection. Procedia Comput. Sci. 110, 32–39 (2017). https://doi.org/10.1016/j.procs.2017.06.110

    Article  Google Scholar 

  25. Sucerquia, A., López, J.D., Vargas-Bonilla, J.F.: SisFall: a fall and movement dataset. Sensors (Switzerland) (2017). https://doi.org/10.3390/s17010198

    Article  Google Scholar 

  26. Torrence, C., Compo, G.P.: A practical guide to wavelet analysis. Bull. Am. Meteor. Soc. (1998). https://doi.org/10.1175/1520-0477(1998)079%3c0061:APGTWA%3e2.0.CO;2

    Article  Google Scholar 

  27. Palmerini, L., Bagalà, F., Zanetti, A., Klenk, J., Becker, C., Cappello, A.: A wavelet-based approach to fall detection. Sensors (Switzerland) (2015). https://doi.org/10.3390/s150511575

    Article  Google Scholar 

  28. Yazar, A., Keskin, F., Töreyin, B.U., Çetin, A.E.: Fall detection using single-tree complex wavelet transform. Pattern Recogn. Lett. (2013). https://doi.org/10.1016/j.patrec.2012.12.010

    Article  Google Scholar 

  29. Hubbard, B.: The World According to Wavelets the Story of a Mathematical Technique in the Making. Universities Press (India) Pvt, Limited (1996)

    MATH  Google Scholar 

  30. Caramia, C., De Marchis, C., Schmid, M.: Optimizing the scale of a wavelet-based method for the detection of gait events from a waist-mounted accelerometer under different walking speeds. Sensors 19(8), 1869(2019). https://doi.org/10.3390/s19081869

  31. PAOS: Wave:Wavelets 2 (1998). https://paos.colorado.edu/research/wavelets/wavelet2.html. Accessed 02 Nov 2020

  32. PyCWT: PyCWT: spectral analysis using wavelets in Python — PyCWT 0.3.0a22 documentation (2017). https://pycwt.readthedocs.io/en/latest/. Accessed 02 Nov 2020

Download references

Acknowledgments

This work has received funding from FEDER Funds through COMPETE program and from National Funds through (FCT) under the project UIDB/00760/2020.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zita Vale .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ribeiro, O., Gomes, L., Vale, Z. (2022). IoT-Based Human Fall Detection Solution Using Morlet Wavelet. In: Corchado, J.M., Trabelsi, S. (eds) Sustainable Smart Cities and Territories. SSCTIC 2021. Lecture Notes in Networks and Systems, vol 253. Springer, Cham. https://doi.org/10.1007/978-3-030-78901-5_2

Download citation

Publish with us

Policies and ethics