Skip to main content

Use Case—Nostro Accounts Match

  • 429 Accesses

Abstract

The matching of nostro accounts is a common challenge in financial departments. Most institutions have automated the preparation of the matching process to a certain extent. However, the matching is still executed by humans. The authors present an approach to combine cluster algorithms with combinatorics to meet the challenge.

Keywords

  • Nostro accounts
  • Supervised methods
  • Machine learning
  • Deep learning

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-78829-2_2
  • Chapter length: 11 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   69.99
Price excludes VAT (USA)
  • ISBN: 978-3-030-78829-2
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Hardcover Book
USD   89.99
Price excludes VAT (USA)
Fig. 1

(© ifb SE)

Fig. 2

(© ifb SE)

Fig. 3

(© ifb SE)

Fig. 4

(© ifb SE)

Fig. 5

(© ifb SE)

Fig. 6

(© ifb SE)

Fig. 7

(© ifb SE)

Notes

  1. 1.

    Google, Apple, Facebook, Amazon, and Microsoft (and in Asia Tencent and Alibaba).

  2. 2.

    Trying out all possible combinations of expected and incoming payments.

Literature

  • Alberto Apostolico, Zvi Galil. 1997. Pattern Matching Algorithms. Oxford: Oxford University Press.

    Google Scholar 

  • cran.r-project.org. 2020. stringdist: Approximate String Matching, Fuzzy Text Search, and String Distance Functions. October 9. Accessed December 17, 2020. https://cran.r-project.org/web/packages/stringdist/index.html.

  • Czwalina, Marie Kristin, Chiara Jakobs, Christopher Schmidt, Matthias Jacoby, and Sebastian Geisel. 2021. “Processes in a Digital Environment.” In The Digital Journey of Banking and Insurance, Volume II—Digitalization and Machine Learning, edited by Volker Liermann and Claus Stegmann. New York: Palgrave Macmillan.

    Google Scholar 

  • H2O.ai. 2019. h2o.ai Overview. January 29. Accessed October 29, 2020. http://docs.h2o.ai/h2o/latest-stable/h2o-docs/index.html.

  • Liermann, Volker, and Sangmeng Li. 2021. “Methods of Machine Learning.” In The Digital Journey of Banking and Insurance, Volume III—Data Storage, Processing, and Analysis, edited by Liermann Volker and Claus Stegmann. New York: Palgrave Macmillan.

    Google Scholar 

  • Schröder, Daniel, and Marian Tieben. 2021. “Sentiment Analysis for Reputational Risk Management.” In The Digital Journey of Banking and Insurance, Volume II—Digitalization and Machine Learning, edited by Volker Liermann and Claus Stegmann. New York: Palgrave Macmillan.

    Google Scholar 

  • Soybir, Sefa. 2021. “Project Management and RPA.” In The Digital Journey of Banking and Insurance, Volume I—Disruption and DNA, edited by Volker Liermann and Claus Stegmann. New York: Palgrave Macmillan.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Volker Liermann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Liermann, V., Li, S., Waizner, J. (2021). Use Case—Nostro Accounts Match. In: Liermann, V., Stegmann, C. (eds) The Digital Journey of Banking and Insurance, Volume II. Palgrave Macmillan, Cham. https://doi.org/10.1007/978-3-030-78829-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-78829-2_2

  • Published:

  • Publisher Name: Palgrave Macmillan, Cham

  • Print ISBN: 978-3-030-78828-5

  • Online ISBN: 978-3-030-78829-2

  • eBook Packages: Economics and FinanceEconomics and Finance (R0)