Skip to main content

Mechanics of Composite Structures

  • Chapter
  • First Online:
Design and Manufacture of Fibre-Reinforced Composites

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 158))

Abstract

This chapter addresses the mechanical properties of a fibre-reinforced composite (FRC). The focus is on calculation of the elastic modulus and strength for unidirectional FRCs using the rule of mixtures expressions, but woven and random fibres are also considered. A unidirectional FRC exhibits anisotropic behaviour. It is stiffest and strongest in the fibre direction but is relatively compliant and weak in the transverse orientation. Woven structures provide similar mechanical properties in their axial (longitudinal) and transverse orientations, whilst random fibre composites simulate in-plane isotropic behaviour. The effect of the fibre and matrix properties on the structural behaviour of a composite is investigated in the context of fibre volume fractions (and weight fractions), assuming no voids and perfect fibre-matrix adhesion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Note, the terms stiffness and elastic modulus are sometimes used interchangeably in this text. In fact, stiffness is not the same as elastic modulus but they are related. This stiffness and elastic modulus relationship is dependent on specimen dimensions and the load application. For instance, in axial members, E is actually related to stiffness (measured along the member’s length) via .

  2. 2.

    A significant underestimate is known to result from this simple expression but it is considered here (in this introductory text) to offer a sensible design estimate. If necessary, a more accurate estimate can be calculated using the more complex, semi-empirical Halpin-Tsai expression in [7].

References

  1. Callister WD, Rethwisch DG (2018) Materials science and engineering: an introduction, 10th edn. Wiley, Hoboken NJ

    Google Scholar 

  2. Mallick PK (2007). Fiber-reinforced composites: materials, manufacturing, and design, 3rd edn. Mechanical engineering. CRC/Taylor & Francis, Boca Raton

    Google Scholar 

  3. Wanberg J (2009) Composite materials: fabrication handbook #1, vol 1. Composite garage series. Wolfgang Publications, Stillwater, Minnesota

    Google Scholar 

  4. Barbero EJ (2017) Introduction to composite materials design, 3rd edn. Composite materials. CRC Press, Boca Raton

    Google Scholar 

  5. Hull D, Clyne TW (1996) An introduction to composite materials, 2nd edn. Cambridge solid state science series. Cambridge University Press, Cambridge

    Google Scholar 

  6. Adams D (2019) Optimum unidirectional compression testing of composites. www.compositesworld.com/articles/optimum-unidirectional-compression-testing-of-composites

  7. Halpin JC, Tsai SW (1967) Environmental factors in composite design. air force materials laboratory

    Google Scholar 

  8. Javanbakht Z, Hall W, Virk AS, Summerscales J, Öchsner A (2020b) Finite element analysis of natural fiber composites using a self-updating model. J Compos Mater 54(23):3275–3286. https://doi.org/10.1177/0021998320912822

    Article  Google Scholar 

  9. Javanbakht Z, Hall W, Öchsner A (2020a) An element-wise scheme to analyse local mechanical anisotropy in fibre-reinforced composites. Mater Sci Technol 36(11):1178–1190. https://doi.org/10.1080/02670836.2020.1762296

    Article  CAS  Google Scholar 

  10. Voigt W (1889) Ueber die beziehung zwischen den beiden elasticitätsconstanten isotroper körper. Annalen der Physik 274(12):573–587. https://doi.org/10.1002/andp.18892741206

    Article  Google Scholar 

  11. Reuss A (1929) Berechnung der fließgrenze von mischkristallen auf grund der plastizitätsbedingung für einkristalle. ZAMM - Zeitschrift für Angewandte Mathematik und Mechanik 9(1):49–58. https://doi.org/10.1002/zamm.19290090104

    Article  CAS  Google Scholar 

  12. Hibbeler RC (2014) Statics and mechanics of materials, 4th edn. Pearson, Upper Saddle River N.J

    Google Scholar 

  13. Hart-Smith LJ (1992) The ten-percent rule for preliminary sizing of fibrous composite structures. Weight Eng 52:29–45

    Google Scholar 

  14. Kelly A, Tyson WR (1965) Tensile properties of fibre-reinforced metals: copper/tungsten and copper/molybdenum. J Mech Phys Solids 13(6):329–350. https://doi.org/10.1016/0022-5096(65)90035-9

    Article  CAS  Google Scholar 

  15. Adams D (2017) Can flexure testing provide estimates of composite strength properties? www.compositesworld.com/articles/can-flexure-testing-provide-estimates-of-composite-strength-properties

  16. Sun W, Guan Z, Li Z, Zhang M, Huang Y (2017) Compressive failure analysis of unidirectional carbon/epoxy composite based on micro-mechanical models. Chin J Aeronaut 30(6):1907–1918. https://doi.org/10.1016/j.cja.2017.10.002

    Article  Google Scholar 

  17. DoITPoMS (2019) Strength of long fibre composites. www.doitpoms.ac.uk/tlplib/fibre_composites/strength.php

  18. Medina C, Canales C, Arango C, Flores P (2014) The influence of carbon fabric weave on the in-plane shear mechanical performance of epoxy fiber-reinforced laminates. J Compos Mater 48(23):2871–2878. https://doi.org/10.1177/0021998313503026

    Article  Google Scholar 

  19. Öchsner A (2016) Continuum damage and fracture mechanics, 1st edn. Springer, Singapore, Imprint: Springer Singapore

    Google Scholar 

  20. Clyne (2019) An introduction to composite materials. Cambridge University Press, Cambridge

    Google Scholar 

  21. Astrom BT (2018) Manufacturing of polymer composites, 2nd edn. Routledge, Boca Raton

    Book  Google Scholar 

  22. Lokensgard E (2010) Industrial plastics: theory and application, 5th edn. Delmar Cengage Learning, Clifton Park NY

    Google Scholar 

  23. Krenchel H (1964) Fibre reinforcement; theoretical and practical investigations of the elasticity and strength of fibre-reinforced materials. Akademisk forlag

    Google Scholar 

  24. Lavender Composites (2017) Prepeg stock list. http://www.lavender-ce.com/wp-content/uploads/prepreg-ex-stock-101017.pdf

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wayne Hall .

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hall, W., Javanbakht, Z. (2021). Mechanics of Composite Structures. In: Design and Manufacture of Fibre-Reinforced Composites. Advanced Structured Materials, vol 158. Springer, Cham. https://doi.org/10.1007/978-3-030-78807-0_2

Download citation

Publish with us

Policies and ethics